File size: 21,645 Bytes
dbb8b4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
except:
class MultiPipelineCallbacks:
...
class PipelineCallback:
...
from diffusers.image_processor import PipelineImageInput
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention import Attention
from diffusers.models.attention_processor import AttnProcessor2_0
from diffusers.pipelines.stable_diffusion.pipeline_output import (
StableDiffusionPipelineOutput,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
StableDiffusionPipeline,
rescale_noise_cfg,
retrieve_timesteps,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionModel,
)
class MVDiffusionPipeline(StableDiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: Optional[CLIPImageProcessor] = None,
image_encoder: Optional[CLIPVisionModel] = None,
requires_safety_checker: bool = False,
) -> None:
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=add_mv_attn_processor(unet),
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
requires_safety_checker=requires_safety_checker,
)
self.num_views = 4
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[
str, List[str], Dict[str, torch.Tensor]
] = "kiigii/imagedream-ipmv-diffusers",
subfolder: Union[str, List[str]] = "ip_adapter",
weight_name: Union[str, List[str]] = "ip-adapter-plus_imagedream.bin",
image_encoder_folder: Optional[str] = "image_encoder",
**kwargs,
) -> None:
super().load_ip_adapter(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
subfolder=subfolder,
weight_name=weight_name,
image_encoder_folder=image_encoder_folder,
**kwargs,
)
print("IP-Adapter Loaded.")
if weight_name == "ip-adapter-plus_imagedream.bin":
setattr(self.image_encoder, "visual_projection", nn.Identity())
add_mv_attn_processor(self.unet)
set_num_views(self.unet, self.num_views + 1)
def unload_ip_adapter(self) -> None:
super().unload_ip_adapter()
set_num_views(self.unet, self.num_views)
def encode_image_to_latents(
self,
image: PipelineImageInput,
height: int,
width: int,
device: torch.device,
num_images_per_prompt: int = 1,
):
dtype = next(self.vae.parameters()).dtype
if isinstance(image, torch.Tensor):
image = F.interpolate(
image,
(height, width),
mode="bilinear",
align_corners=False,
antialias=True,
)
else:
image = self.image_processor.preprocess(image, height, width)
# image should be in range [-1, 1]
image = image.to(device=device, dtype=dtype)
def vae_encode(image):
posterior = self.vae.encode(image).latent_dist
latents = posterior.sample() * self.vae.config.scaling_factor
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
return latents
latents = vae_encode(image)
uncond_latents = vae_encode(torch.zeros_like(image))
return latents, uncond_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
elevation: float = 0.0,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
# StableDiffusion support `ip_adapter_image_embeds` but we don't use, and raise ValueError.
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[
Union[
Callable[[int, int, Dict], None],
PipelineCallback,
MultiPipelineCallbacks,
]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
if ip_adapter_image_embeds is not None:
raise ValueError(
"do not use `ip_adapter_image_embeds` in ImageDream, use `ip_adapter_image`"
)
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# ImageDream number of views
if cross_attention_kwargs is None:
num_views = self.num_views
else:
cross_attention_kwargs.pop("num_views", self.num_views)
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# to deal with lora scaling and other possible forward hooks
# 1. Check inputs. Raise error if not correct
if prompt is None:
prompt = ""
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
ip_adapter_image,
None, # ip_adapter_image_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
lora_scale = (
self.cross_attention_kwargs.get("scale", None)
if self.cross_attention_kwargs is not None
else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
)
# camera parameter for ImageDream
camera = get_camera(
num_views, elevation=elevation, extra_view=ip_adapter_image is not None
).to(dtype=prompt_embeds.dtype, device=device)
camera = camera.repeat(batch_size * num_images_per_prompt, 1)
if ip_adapter_image is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
None, # ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# ImageDream
image_latents, negative_image_latents = self.encode_image_to_latents(
ip_adapter_image,
height,
width,
device,
batch_size * num_images_per_prompt,
)
num_views += 1
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
camera = torch.cat([camera] * 2)
if ip_adapter_image is not None:
image_latents = torch.cat([negative_image_latents, image_latents])
# Multi-view inputs for ImageDream.
prompt_embeds = prompt_embeds.repeat_interleave(num_views, dim=0)
if ip_adapter_image is not None:
image_embeds = [i.repeat_interleave(num_views, dim=0) for i in image_embeds]
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt * num_views,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.1 Add image embeds for IP-Adapter
if ip_adapter_image is not None:
added_cond_kwargs = {"image_embeds": image_embeds}
else:
added_cond_kwargs = None
# 6.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
batch_size * num_images_per_prompt
)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
set_num_views(self.unet, num_views)
# fmt: off
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if ip_adapter_image is not None:
latent_model_input[num_views - 1 :: num_views, :, :, :] = image_latents
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
class_labels=camera,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = torch.lerp(noise_pred_uncond, noise_pred_text, self.guidance_scale)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# fmt: on
if not output_type == "latent":
image = self.vae.decode(
latents / self.vae.config.scaling_factor,
return_dict=False,
generator=generator,
)[0]
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(
image, output_type=output_type, do_denormalize=do_denormalize
)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept
)
# fmt: off
# Copied from ImageDream
# https://github.com/bytedance/ImageDream/blob/main/extern/ImageDream/imagedream/camera_utils.py
def create_camera_to_world_matrix(elevation, azimuth):
elevation = np.radians(elevation)
azimuth = np.radians(azimuth)
# Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
x = np.cos(elevation) * np.sin(azimuth)
y = np.sin(elevation)
z = np.cos(elevation) * np.cos(azimuth)
# Calculate camera position, target, and up vectors
camera_pos = np.array([x, y, z])
target = np.array([0, 0, 0])
up = np.array([0, 1, 0])
# Construct view matrix
forward = target - camera_pos
forward /= np.linalg.norm(forward)
right = np.cross(forward, up)
right /= np.linalg.norm(right)
new_up = np.cross(right, forward)
new_up /= np.linalg.norm(new_up)
cam2world = np.eye(4)
cam2world[:3, :3] = np.array([right, new_up, -forward]).T
cam2world[:3, 3] = camera_pos
return cam2world
def convert_opengl_to_blender(camera_matrix):
if isinstance(camera_matrix, np.ndarray):
# Construct transformation matrix to convert from OpenGL space to Blender space
flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
camera_matrix_blender = np.dot(flip_yz, camera_matrix)
else:
# Construct transformation matrix to convert from OpenGL space to Blender space
flip_yz = torch.tensor(
[[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
)
if camera_matrix.ndim == 3:
flip_yz = flip_yz.unsqueeze(0)
camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
return camera_matrix_blender
def normalize_camera(camera_matrix):
"""normalize the camera location onto a unit-sphere"""
if isinstance(camera_matrix, np.ndarray):
camera_matrix = camera_matrix.reshape(-1, 4, 4)
translation = camera_matrix[:, :3, 3]
translation = translation / (
np.linalg.norm(translation, axis=1, keepdims=True) + 1e-8
)
camera_matrix[:, :3, 3] = translation
else:
camera_matrix = camera_matrix.reshape(-1, 4, 4)
translation = camera_matrix[:, :3, 3]
translation = translation / (
torch.norm(translation, dim=1, keepdim=True) + 1e-8
)
camera_matrix[:, :3, 3] = translation
return camera_matrix.reshape(-1, 16)
def get_camera(
num_frames,
elevation=15,
azimuth_start=0,
azimuth_span=360,
blender_coord=True,
extra_view=False,
):
angle_gap = azimuth_span / num_frames
cameras = []
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
camera_matrix = create_camera_to_world_matrix(elevation, azimuth)
if blender_coord:
camera_matrix = convert_opengl_to_blender(camera_matrix)
cameras.append(camera_matrix.flatten())
if extra_view:
dim = len(cameras[0])
cameras.append(np.zeros(dim))
return torch.tensor(np.stack(cameras, 0)).float()
# fmt: on
def add_mv_attn_processor(unet: UNet2DConditionModel, num_views: int = 4) -> UNet2DConditionModel:
attn_procs = {}
for key, attn_processor in unet.attn_processors.items():
if "attn1" in key:
attn_procs[key] = MVAttnProcessor2_0(num_views)
else:
attn_procs[key] = attn_processor
unet.set_attn_processor(attn_procs)
return unet
def set_num_views(unet: UNet2DConditionModel, num_views: int) -> UNet2DConditionModel:
for key, attn_processor in unet.attn_processors.items():
if isinstance(attn_processor, MVAttnProcessor2_0):
attn_processor.num_views = num_views
return unet
class MVAttnProcessor2_0(AttnProcessor2_0):
def __init__(self, num_views: int = 4):
super().__init__()
self.num_views = num_views
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
):
if self.num_views == 1:
return super().__call__(
attn=attn,
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
temb=temb,
*args,
**kwargs,
)
input_ndim = hidden_states.ndim
B = hidden_states.size(0)
if B % self.num_views:
raise ValueError(
f"`batch_size`(got {B}) must be a multiple of `num_views`(got {self.num_views})."
)
real_B = B // self.num_views
if input_ndim == 4:
H, W = hidden_states.shape[2:]
hidden_states = hidden_states.reshape(real_B, -1, H, W).transpose(1, 2)
else:
hidden_states = hidden_states.reshape(real_B, -1, hidden_states.size(-1))
hidden_states = super().__call__(
attn=attn,
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
temb=temb,
*args,
**kwargs,
)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(B, -1, H, W)
else:
hidden_states = hidden_states.reshape(B, -1, hidden_states.size(-1))
return hidden_states
|