File size: 21,645 Bytes
dbb8b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
except:

    class MultiPipelineCallbacks:
        ...

    class PipelineCallback:
        ...


from diffusers.image_processor import PipelineImageInput
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention import Attention
from diffusers.models.attention_processor import AttnProcessor2_0
from diffusers.pipelines.stable_diffusion.pipeline_output import (
    StableDiffusionPipelineOutput,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
    StableDiffusionPipeline,
    rescale_noise_cfg,
    retrieve_timesteps,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
    StableDiffusionSafetyChecker,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionModel,
)


class MVDiffusionPipeline(StableDiffusionPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: Optional[CLIPImageProcessor] = None,
        image_encoder: Optional[CLIPVisionModel] = None,
        requires_safety_checker: bool = False,
    ) -> None:
        super().__init__(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=add_mv_attn_processor(unet),
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
            requires_safety_checker=requires_safety_checker,
        )
        self.num_views = 4

    def load_ip_adapter(
        self,
        pretrained_model_name_or_path_or_dict: Union[
            str, List[str], Dict[str, torch.Tensor]
        ] = "kiigii/imagedream-ipmv-diffusers",
        subfolder: Union[str, List[str]] = "ip_adapter",
        weight_name: Union[str, List[str]] = "ip-adapter-plus_imagedream.bin",
        image_encoder_folder: Optional[str] = "image_encoder",
        **kwargs,
    ) -> None:
        super().load_ip_adapter(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            subfolder=subfolder,
            weight_name=weight_name,
            image_encoder_folder=image_encoder_folder,
            **kwargs,
        )
        print("IP-Adapter Loaded.")

        if weight_name == "ip-adapter-plus_imagedream.bin":
            setattr(self.image_encoder, "visual_projection", nn.Identity())
            add_mv_attn_processor(self.unet)
            set_num_views(self.unet, self.num_views + 1)

    def unload_ip_adapter(self) -> None:
        super().unload_ip_adapter()
        set_num_views(self.unet, self.num_views)

    def encode_image_to_latents(
        self,
        image: PipelineImageInput,
        height: int,
        width: int,
        device: torch.device,
        num_images_per_prompt: int = 1,
    ):
        dtype = next(self.vae.parameters()).dtype

        if isinstance(image, torch.Tensor):
            image = F.interpolate(
                image,
                (height, width),
                mode="bilinear",
                align_corners=False,
                antialias=True,
            )
        else:
            image = self.image_processor.preprocess(image, height, width)

        # image should be in range [-1, 1]
        image = image.to(device=device, dtype=dtype)

        def vae_encode(image):
            posterior = self.vae.encode(image).latent_dist
            latents = posterior.sample() * self.vae.config.scaling_factor
            latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
            return latents

        latents = vae_encode(image)
        uncond_latents = vae_encode(torch.zeros_like(image))
        return latents, uncond_latents

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        elevation: float = 0.0,
        timesteps: List[int] = None,
        sigmas: List[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        # StableDiffusion support `ip_adapter_image_embeds` but we don't use, and raise ValueError.
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[
            Union[
                Callable[[int, int, Dict], None],
                PipelineCallback,
                MultiPipelineCallbacks,
            ]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        if ip_adapter_image_embeds is not None:
            raise ValueError(
                "do not use `ip_adapter_image_embeds` in ImageDream, use `ip_adapter_image`"
            )

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # ImageDream number of views
        if cross_attention_kwargs is None:
            num_views = self.num_views
        else:
            cross_attention_kwargs.pop("num_views", self.num_views)

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
        # to deal with lora scaling and other possible forward hooks

        # 1. Check inputs. Raise error if not correct
        if prompt is None:
            prompt = ""
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            None,  # ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None)
            if self.cross_attention_kwargs is not None
            else None
        )

        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )

        # camera parameter for ImageDream
        camera = get_camera(
            num_views, elevation=elevation, extra_view=ip_adapter_image is not None
        ).to(dtype=prompt_embeds.dtype, device=device)
        camera = camera.repeat(batch_size * num_images_per_prompt, 1)

        if ip_adapter_image is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                None,  # ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )
            # ImageDream
            image_latents, negative_image_latents = self.encode_image_to_latents(
                ip_adapter_image,
                height,
                width,
                device,
                batch_size * num_images_per_prompt,
            )
            num_views += 1

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            camera = torch.cat([camera] * 2)
            if ip_adapter_image is not None:
                image_latents = torch.cat([negative_image_latents, image_latents])

        # Multi-view inputs for ImageDream.
        prompt_embeds = prompt_embeds.repeat_interleave(num_views, dim=0)
        if ip_adapter_image is not None:
            image_embeds = [i.repeat_interleave(num_views, dim=0) for i in image_embeds]

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt * num_views,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Add image embeds for IP-Adapter
        if ip_adapter_image is not None:
            added_cond_kwargs = {"image_embeds": image_embeds}
        else:
            added_cond_kwargs = None

        # 6.2 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
                batch_size * num_images_per_prompt
            )
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        set_num_views(self.unet, num_views)

        # fmt: off
        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                if ip_adapter_image is not None:
                    latent_model_input[num_views - 1 :: num_views, :, :, :] = image_latents
                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    class_labels=camera,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = torch.lerp(noise_pred_uncond, noise_pred_text, self.guidance_scale)

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
        # fmt: on
        if not output_type == "latent":
            image = self.vae.decode(
                latents / self.vae.config.scaling_factor,
                return_dict=False,
                generator=generator,
            )[0]
            image, has_nsfw_concept = self.run_safety_checker(
                image, device, prompt_embeds.dtype
            )
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(
            image, output_type=output_type, do_denormalize=do_denormalize
        )

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(
            images=image, nsfw_content_detected=has_nsfw_concept
        )


# fmt: off
# Copied from ImageDream
# https://github.com/bytedance/ImageDream/blob/main/extern/ImageDream/imagedream/camera_utils.py


def create_camera_to_world_matrix(elevation, azimuth):
    elevation = np.radians(elevation)
    azimuth = np.radians(azimuth)
    # Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
    x = np.cos(elevation) * np.sin(azimuth)
    y = np.sin(elevation)
    z = np.cos(elevation) * np.cos(azimuth)

    # Calculate camera position, target, and up vectors
    camera_pos = np.array([x, y, z])
    target = np.array([0, 0, 0])
    up = np.array([0, 1, 0])

    # Construct view matrix
    forward = target - camera_pos
    forward /= np.linalg.norm(forward)
    right = np.cross(forward, up)
    right /= np.linalg.norm(right)
    new_up = np.cross(right, forward)
    new_up /= np.linalg.norm(new_up)
    cam2world = np.eye(4)
    cam2world[:3, :3] = np.array([right, new_up, -forward]).T
    cam2world[:3, 3] = camera_pos
    return cam2world


def convert_opengl_to_blender(camera_matrix):
    if isinstance(camera_matrix, np.ndarray):
        # Construct transformation matrix to convert from OpenGL space to Blender space
        flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
        camera_matrix_blender = np.dot(flip_yz, camera_matrix)
    else:
        # Construct transformation matrix to convert from OpenGL space to Blender space
        flip_yz = torch.tensor(
            [[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
        )
        if camera_matrix.ndim == 3:
            flip_yz = flip_yz.unsqueeze(0)
        camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
    return camera_matrix_blender


def normalize_camera(camera_matrix):
    """normalize the camera location onto a unit-sphere"""
    if isinstance(camera_matrix, np.ndarray):
        camera_matrix = camera_matrix.reshape(-1, 4, 4)
        translation = camera_matrix[:, :3, 3]
        translation = translation / (
            np.linalg.norm(translation, axis=1, keepdims=True) + 1e-8
        )
        camera_matrix[:, :3, 3] = translation
    else:
        camera_matrix = camera_matrix.reshape(-1, 4, 4)
        translation = camera_matrix[:, :3, 3]
        translation = translation / (
            torch.norm(translation, dim=1, keepdim=True) + 1e-8
        )
        camera_matrix[:, :3, 3] = translation
    return camera_matrix.reshape(-1, 16)


def get_camera(
    num_frames,
    elevation=15,
    azimuth_start=0,
    azimuth_span=360,
    blender_coord=True,
    extra_view=False,
):
    angle_gap = azimuth_span / num_frames
    cameras = []
    for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
        camera_matrix = create_camera_to_world_matrix(elevation, azimuth)
        if blender_coord:
            camera_matrix = convert_opengl_to_blender(camera_matrix)
        cameras.append(camera_matrix.flatten())

    if extra_view:
        dim = len(cameras[0])
        cameras.append(np.zeros(dim))
    return torch.tensor(np.stack(cameras, 0)).float()
# fmt: on


def add_mv_attn_processor(unet: UNet2DConditionModel, num_views: int = 4) -> UNet2DConditionModel:
    attn_procs = {}
    for key, attn_processor in unet.attn_processors.items():
        if "attn1" in key:
            attn_procs[key] = MVAttnProcessor2_0(num_views)
        else:
            attn_procs[key] = attn_processor
    unet.set_attn_processor(attn_procs)
    return unet


def set_num_views(unet: UNet2DConditionModel, num_views: int) -> UNet2DConditionModel:
    for key, attn_processor in unet.attn_processors.items():
        if isinstance(attn_processor, MVAttnProcessor2_0):
            attn_processor.num_views = num_views
    return unet


class MVAttnProcessor2_0(AttnProcessor2_0):
    def __init__(self, num_views: int = 4):
        super().__init__()
        self.num_views = num_views

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        *args,
        **kwargs,
    ):
        if self.num_views == 1:
            return super().__call__(
                attn=attn,
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                temb=temb,
                *args,
                **kwargs,
            )

        input_ndim = hidden_states.ndim
        B = hidden_states.size(0)
        if B % self.num_views:
            raise ValueError(
                f"`batch_size`(got {B}) must be a multiple of `num_views`(got {self.num_views})."
            )
        real_B = B // self.num_views
        if input_ndim == 4:
            H, W = hidden_states.shape[2:]
            hidden_states = hidden_states.reshape(real_B, -1, H, W).transpose(1, 2)
        else:
            hidden_states = hidden_states.reshape(real_B, -1, hidden_states.size(-1))
        hidden_states = super().__call__(
            attn=attn,
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            temb=temb,
            *args,
            **kwargs,
        )
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(B, -1, H, W)
        else:
            hidden_states = hidden_states.reshape(B, -1, hidden_states.size(-1))
        return hidden_states