File size: 2,161 Bytes
e1b0c44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: ec_classfication
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ec_classfication
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7927
- F1: 0.7727
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 61 | 0.6210 | 0.4068 |
| No log | 2.0 | 122 | 0.4597 | 0.8261 |
| No log | 3.0 | 183 | 0.4635 | 0.7917 |
| No log | 4.0 | 244 | 0.5446 | 0.7342 |
| No log | 5.0 | 305 | 0.5366 | 0.8000 |
| No log | 6.0 | 366 | 0.6233 | 0.7789 |
| No log | 7.0 | 427 | 0.6171 | 0.7955 |
| No log | 8.0 | 488 | 0.6582 | 0.7955 |
| 0.2985 | 9.0 | 549 | 0.7222 | 0.7816 |
| 0.2985 | 10.0 | 610 | 0.7377 | 0.7865 |
| 0.2985 | 11.0 | 671 | 0.7467 | 0.7727 |
| 0.2985 | 12.0 | 732 | 0.7914 | 0.7826 |
| 0.2985 | 13.0 | 793 | 0.7886 | 0.7727 |
| 0.2985 | 14.0 | 854 | 0.7914 | 0.7727 |
| 0.2985 | 15.0 | 915 | 0.7927 | 0.7727 |
### Framework versions
- Transformers 4.27.3
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.2
|