File size: 2,161 Bytes
e1b0c44 ab9b88a e1b0c44 ab9b88a e1b0c44 ab9b88a e1b0c44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: ec_classfication
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ec_classfication
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6543
- F1: 0.7609
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 31 | 0.6418 | 0.4262 |
| No log | 2.0 | 62 | 0.4992 | 0.7342 |
| No log | 3.0 | 93 | 0.4732 | 0.7879 |
| No log | 4.0 | 124 | 0.4817 | 0.7089 |
| No log | 5.0 | 155 | 0.4872 | 0.7742 |
| No log | 6.0 | 186 | 0.5026 | 0.7872 |
| No log | 7.0 | 217 | 0.5202 | 0.7778 |
| No log | 8.0 | 248 | 0.5280 | 0.7711 |
| No log | 9.0 | 279 | 0.5629 | 0.75 |
| No log | 10.0 | 310 | 0.6319 | 0.7872 |
| No log | 11.0 | 341 | 0.6363 | 0.7872 |
| No log | 12.0 | 372 | 0.6850 | 0.7708 |
| No log | 13.0 | 403 | 0.6702 | 0.7872 |
| No log | 14.0 | 434 | 0.6495 | 0.7692 |
| No log | 15.0 | 465 | 0.6543 | 0.7609 |
### Framework versions
- Transformers 4.27.3
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.2
|