File size: 3,799 Bytes
1ac462f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: MEHDI_Assamese_TTS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MEHDI_Assamese_TTS

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5555

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 155
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 1.2762        | 3.4561   | 100  | 0.5795          |
| 1.1771        | 6.9123   | 200  | 0.5489          |
| 1.1979        | 10.3509  | 300  | 0.5573          |
| 1.1083        | 13.8070  | 400  | 0.5319          |
| 1.0821        | 17.2456  | 500  | 0.5273          |
| 1.0297        | 20.7018  | 600  | 0.5075          |
| 1.0778        | 24.1404  | 700  | 0.5064          |
| 0.9818        | 27.5965  | 800  | 0.5098          |
| 0.9574        | 31.0351  | 900  | 0.4986          |
| 0.9571        | 34.4912  | 1000 | 0.5123          |
| 0.9955        | 37.9474  | 1100 | 0.5217          |
| 0.9455        | 41.3860  | 1200 | 0.5223          |
| 0.9084        | 44.8421  | 1300 | 0.5150          |
| 0.9057        | 48.2807  | 1400 | 0.5073          |
| 0.9038        | 51.7368  | 1500 | 0.5103          |
| 0.8802        | 55.1754  | 1600 | 0.5163          |
| 0.9033        | 58.6316  | 1700 | 0.5058          |
| 0.8507        | 62.0702  | 1800 | 0.5098          |
| 0.8549        | 65.5263  | 1900 | 0.5170          |
| 0.8795        | 68.9825  | 2000 | 0.5167          |
| 0.8629        | 72.4211  | 2100 | 0.5306          |
| 0.8577        | 75.8772  | 2200 | 0.5180          |
| 0.8197        | 79.3158  | 2300 | 0.5187          |
| 0.8278        | 82.7719  | 2400 | 0.5213          |
| 0.8016        | 86.2105  | 2500 | 0.5169          |
| 0.7927        | 89.6667  | 2600 | 0.5281          |
| 0.7815        | 93.1053  | 2700 | 0.5287          |
| 0.778         | 96.5614  | 2800 | 0.5288          |
| 0.7894        | 100.0    | 2900 | 0.5326          |
| 0.7521        | 103.4561 | 3000 | 0.5343          |
| 0.7705        | 106.9123 | 3100 | 0.5371          |
| 0.7652        | 110.3509 | 3200 | 0.5344          |
| 0.7458        | 113.8070 | 3300 | 0.5359          |
| 0.7583        | 117.2456 | 3400 | 0.5407          |
| 0.7479        | 120.7018 | 3500 | 0.5369          |
| 0.7338        | 124.1404 | 3600 | 0.5512          |
| 0.7662        | 127.5965 | 3700 | 0.5460          |
| 0.7212        | 131.0351 | 3800 | 0.5484          |
| 0.736         | 134.4912 | 3900 | 0.5447          |
| 0.7367        | 137.9474 | 4000 | 0.5536          |
| 0.7065        | 141.3860 | 4100 | 0.5566          |
| 0.711         | 144.8421 | 4200 | 0.5550          |
| 0.718         | 148.2807 | 4300 | 0.5555          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0