kloodia commited on
Commit
c7fb9ec
·
verified ·
1 Parent(s): 0e02522

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - finetuned
6
+ - multimodal
7
+ base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
8
+ dataset: ./out
9
+ inference: false
10
+ ---
11
+
12
+ These are weights for a version of `mistralai/Mixtral-8x7B-Instruct-v0.1` finetuned for multimodal applications.
13
+
14
+ ### Modalities
15
+
16
+ * CLIPVisionModality (use `<image>` in text and provide `images`, encoded as 576 tokens)
17
+
18
+ ### Usage
19
+
20
+ GitHub: https://github.com/sshh12/multi_token (includes training scripts and basic inference server)
21
+
22
+ ### Dataset
23
+
24
+ ./out (558128 examples)
25
+
26
+ ```
27
+ {'id': '004539375', 'images': ['/data/llava_pretrain_data/images/00453/004539375.jpg'], 'messages': [{'content': 'Render a clear and concise summary of the photo.\n<image>', 'role': 'user'}, {'content': 'select luxury furniture 3 - inch gel memory foam mattress topper', 'role': 'assistant'}]}
28
+ ```
29
+
30
+ ### Training Device(s)
31
+
32
+ ```
33
+ name, pci.bus_id, vbios_version
34
+ NVIDIA GeForce RTX 3090, 00000000:B3:00.0, 94.02.42.00.B4
35
+ ```
36
+
37
+
38
+ ### Model
39
+
40
+ ```
41
+ MistralLMMForCausalLM.model =
42
+
43
+ PeftModelForCausalLM(
44
+ (base_model): LoraModel(
45
+ (model): MistralLMMForCausalLM(
46
+ (model): MistralLMMModel(
47
+ (embed_tokens): Embedding(32000, 4096)
48
+ (layers): ModuleList(
49
+ (0-31): 32 x MistralDecoderLayer(
50
+ (self_attn): MistralAttention(
51
+ (q_proj): lora.Linear(
52
+ (base_layer): Linear(in_features=4096, out_features=4096, bias=False)
53
+ (lora_dropout): ModuleDict(
54
+ (default): Dropout(p=0.05, inplace=False)
55
+ )
56
+ (lora_A): ModuleDict(
57
+ (default): Linear(in_features=4096, out_features=64, bias=False)
58
+ )
59
+ (lora_B): ModuleDict(
60
+ (default): Linear(in_features=64, out_features=4096, bias=False)
61
+ )
62
+ (lora_embedding_A): ParameterDict()
63
+ (lora_embedding_B): ParameterDict()
64
+ )
65
+ (k_proj): lora.Linear(
66
+ (base_layer): Linear(in_features=4096, out_features=1024, bias=False)
67
+ (lora_dropout): ModuleDict(
68
+ (default): Dropout(p=0.05, inplace=False)
69
+ )
70
+ (lora_A): ModuleDict(
71
+ (default): Linear(in_features=4096, out_features=64, bias=False)
72
+ )
73
+ (lora_B): ModuleDict(
74
+ (default): Linear(in_features=64, out_features=1024, bias=False)
75
+ )
76
+ (lora_embedding_A): ParameterDict()
77
+ (lora_embedding_B): ParameterDict()
78
+ )
79
+ (v_proj): lora.Linear(
80
+ (base_layer): Linear(in_features=4096, out_features=1024, bias=False)
81
+ (lora_dropout): ModuleDict(
82
+ (default): Dropout(p=0.05, inplace=False)
83
+ )
84
+ (lora_A): ModuleDict(
85
+ (default): Linear(in_features=4096, out_features=64, bias=False)
86
+ )
87
+ (lora_B): ModuleDict(
88
+ (default): Linear(in_features=64, out_features=1024, bias=False)
89
+ )
90
+ (lora_embedding_A): ParameterDict()
91
+ (lora_embedding_B): ParameterDict()
92
+ )
93
+ (o_proj): lora.Linear(
94
+ (base_layer): Linear(in_features=4096, out_features=4096, bias=False)
95
+ (lora_dropout): ModuleDict(
96
+ (default): Dropout(p=0.05, inplace=False)
97
+ )
98
+ (lora_A): ModuleDict(
99
+ (default): Linear(in_features=4096, out_features=64, bias=False)
100
+ )
101
+ (lora_B): ModuleDict(
102
+ (default): Linear(in_features=64, out_features=4096, bias=False)
103
+ )
104
+ (lora_embedding_A): ParameterDict()
105
+ (lora_embedding_B): ParameterDict()
106
+ )
107
+ (rotary_emb): MistralRotaryEmbedding()
108
+ )
109
+ (mlp): MistralMLP(
110
+ (gate_proj): lora.Linear(
111
+ (base_layer): Linear(in_features=4096, out_features=14336, bias=False)
112
+ (lora_dropout): ModuleDict(
113
+ (default): Dropout(p=0.05, inplace=False)
114
+ )
115
+ (lora_A): ModuleDict(
116
+ (default): Linear(in_features=4096, out_features=64, bias=False)
117
+ )
118
+ (lora_B): ModuleDict(
119
+ (default): Linear(in_features=64, out_features=14336, bias=False)
120
+ )
121
+ (lora_embedding_A): ParameterDict()
122
+ (lora_embedding_B): ParameterDict()
123
+ )
124
+ (up_proj): lora.Linear(
125
+ (base_layer): Linear(in_features=4096, out_features=14336, bias=False)
126
+ (lora_dropout): ModuleDict(
127
+ (default): Dropout(p=0.05, inplace=False)
128
+ )
129
+ (lora_A): ModuleDict(
130
+ (default): Linear(in_features=4096, out_features=64, bias=False)
131
+ )
132
+ (lora_B): ModuleDict(
133
+ (default): Linear(in_features=64, out_features=14336, bias=False)
134
+ )
135
+ (lora_embedding_A): ParameterDict()
136
+ (lora_embedding_B): ParameterDict()
137
+ )
138
+ (down_proj): lora.Linear(
139
+ (base_layer): Linear(in_features=14336, out_features=4096, bias=False)
140
+ (lora_dropout): ModuleDict(
141
+ (default): Dropout(p=0.05, inplace=False)
142
+ )
143
+ (lora_A): ModuleDict(
144
+ (default): Linear(in_features=14336, out_features=64, bias=False)
145
+ )
146
+ (lora_B): ModuleDict(
147
+ (default): Linear(in_features=64, out_features=4096, bias=False)
148
+ )
149
+ (lora_embedding_A): ParameterDict()
150
+ (lora_embedding_B): ParameterDict()
151
+ )
152
+ (act_fn): SiLU()
153
+ )
154
+ (input_layernorm): MistralRMSNorm()
155
+ (post_attention_layernorm): MistralRMSNorm()
156
+ )
157
+ )
158
+ (norm): MistralRMSNorm()
159
+ (vision_clip_lmm_projector): Sequential(
160
+ (0): Linear(in_features=1024, out_features=4096, bias=True)
161
+ (1): GELU(approximate='none')
162
+ (2): Linear(in_features=4096, out_features=4096, bias=True)
163
+ )
164
+ )
165
+ (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
166
+ )
167
+ )
168
+ )
169
+ ```
170
+
171
+ ### Framework versions
172
+
173
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "o_proj",
25
+ "up_proj",
26
+ "q_proj",
27
+ "down_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e47be90f9f4ce25fbcd39f23e259812fe1d53a2fcf5f777995a06d3473dd2814
3
+ size 335605144
checkpoint-2000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-2000/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "o_proj",
25
+ "up_proj",
26
+ "q_proj",
27
+ "down_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-2000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e47be90f9f4ce25fbcd39f23e259812fe1d53a2fcf5f777995a06d3473dd2814
3
+ size 335605144
checkpoint-2000/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "modalities": [
15
+ "vision_clip"
16
+ ],
17
+ "modality_builder": "vision_clip",
18
+ "model_cls": "MistralLMMForCausalLM",
19
+ "model_type": "mistral-lmm",
20
+ "num_attention_heads": 32,
21
+ "num_experts_per_tok": 2,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "num_local_experts": 8,
25
+ "output_router_logits": false,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_theta": 1000000.0,
28
+ "router_aux_loss_coef": 0.02,
29
+ "sliding_window": null,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.40.1",
33
+ "use_cache": false,
34
+ "vocab_size": 32000
35
+ }
checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f00c0a439e852c062c0abb46613c64783569e3be668d8710abaac29b04578bc
3
+ size 251761335
checkpoint-2000/global_step2000/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9e41a656706dbfca9f32697a8d93ca097dd3ef3d817fba3b9c564e3282d0f10
3
+ size 29680771757
checkpoint-2000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2000
checkpoint-2000/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5007350502df6c02448c658b9321fddb2488e1fa4dec7088b8f6cd6208a20265
3
+ size 41961255
checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc778ca04eaa15e439c090637842cc48df852e98bf79e1922478ba8602e4caa
3
+ size 14575
checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf6824046aa2a743eebe05536b66cd7b358bc4acd0b9981d5643779b0fb6efe5
3
+ size 627
checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": "<unk>",
10
+ "eos_token": {
11
+ "content": "</s>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "mask_token": "<unk>",
18
+ "pad_token": "<unk>",
19
+ "sep_token": "<unk>",
20
+ "unk_token": {
21
+ "content": "<unk>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
checkpoint-2000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-2000/tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "cls_token": "<unk>",
36
+ "eos_token": "</s>",
37
+ "legacy": true,
38
+ "mask_token": "<unk>",
39
+ "model_max_length": 2048,
40
+ "pad_token": "<unk>",
41
+ "padding_side": "right",
42
+ "sep_token": "<unk>",
43
+ "sp_model_kwargs": {},
44
+ "spaces_between_special_tokens": false,
45
+ "tokenizer_class": "LlamaTokenizer",
46
+ "unk_token": "<unk>",
47
+ "use_default_system_prompt": false
48
+ }
checkpoint-2000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f3728bcc6e19d69628a86059c42b19e48bf9eaee9b99e6319f69a59242d2de8
3
+ size 5947
checkpoint-2000/zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage == 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage == 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage == 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "modalities": [
15
+ "vision_clip"
16
+ ],
17
+ "modality_builder": "vision_clip",
18
+ "model_cls": "MistralLMMForCausalLM",
19
+ "model_type": "mistral-lmm",
20
+ "num_attention_heads": 32,
21
+ "num_experts_per_tok": 2,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "num_local_experts": 8,
25
+ "output_router_logits": false,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_theta": 1000000.0,
28
+ "router_aux_loss_coef": 0.02,
29
+ "sliding_window": null,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.40.1",
33
+ "use_cache": true,
34
+ "vocab_size": 32000
35
+ }
model_named_parameters.txt ADDED
@@ -0,0 +1,743 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model.model.model.embed_tokens.weight torch.Size([32000, 4096]) False
2
+ base_model.model.model.layers.0.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
3
+ base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
4
+ base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
5
+ base_model.model.model.layers.0.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
6
+ base_model.model.model.layers.0.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
7
+ base_model.model.model.layers.0.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
8
+ base_model.model.model.layers.0.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
9
+ base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
10
+ base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
11
+ base_model.model.model.layers.0.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
12
+ base_model.model.model.layers.0.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
13
+ base_model.model.model.layers.0.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
14
+ base_model.model.model.layers.0.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
15
+ base_model.model.model.layers.0.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
16
+ base_model.model.model.layers.0.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
17
+ base_model.model.model.layers.0.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
18
+ base_model.model.model.layers.0.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
19
+ base_model.model.model.layers.0.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
20
+ base_model.model.model.layers.0.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
21
+ base_model.model.model.layers.0.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
22
+ base_model.model.model.layers.0.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
23
+ base_model.model.model.layers.0.input_layernorm.weight torch.Size([4096]) False
24
+ base_model.model.model.layers.0.post_attention_layernorm.weight torch.Size([4096]) False
25
+ base_model.model.model.layers.1.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
26
+ base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
27
+ base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
28
+ base_model.model.model.layers.1.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
29
+ base_model.model.model.layers.1.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
30
+ base_model.model.model.layers.1.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
31
+ base_model.model.model.layers.1.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
32
+ base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
33
+ base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
34
+ base_model.model.model.layers.1.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
35
+ base_model.model.model.layers.1.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
36
+ base_model.model.model.layers.1.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
37
+ base_model.model.model.layers.1.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
38
+ base_model.model.model.layers.1.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
39
+ base_model.model.model.layers.1.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
40
+ base_model.model.model.layers.1.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
41
+ base_model.model.model.layers.1.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
42
+ base_model.model.model.layers.1.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
43
+ base_model.model.model.layers.1.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
44
+ base_model.model.model.layers.1.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
45
+ base_model.model.model.layers.1.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
46
+ base_model.model.model.layers.1.input_layernorm.weight torch.Size([4096]) False
47
+ base_model.model.model.layers.1.post_attention_layernorm.weight torch.Size([4096]) False
48
+ base_model.model.model.layers.2.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
49
+ base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
50
+ base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
51
+ base_model.model.model.layers.2.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
52
+ base_model.model.model.layers.2.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
53
+ base_model.model.model.layers.2.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
54
+ base_model.model.model.layers.2.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
55
+ base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
56
+ base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
57
+ base_model.model.model.layers.2.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
58
+ base_model.model.model.layers.2.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
59
+ base_model.model.model.layers.2.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
60
+ base_model.model.model.layers.2.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
61
+ base_model.model.model.layers.2.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
62
+ base_model.model.model.layers.2.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
63
+ base_model.model.model.layers.2.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
64
+ base_model.model.model.layers.2.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
65
+ base_model.model.model.layers.2.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
66
+ base_model.model.model.layers.2.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
67
+ base_model.model.model.layers.2.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
68
+ base_model.model.model.layers.2.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
69
+ base_model.model.model.layers.2.input_layernorm.weight torch.Size([4096]) False
70
+ base_model.model.model.layers.2.post_attention_layernorm.weight torch.Size([4096]) False
71
+ base_model.model.model.layers.3.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
72
+ base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
73
+ base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
74
+ base_model.model.model.layers.3.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
75
+ base_model.model.model.layers.3.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
76
+ base_model.model.model.layers.3.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
77
+ base_model.model.model.layers.3.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
78
+ base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
79
+ base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
80
+ base_model.model.model.layers.3.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
81
+ base_model.model.model.layers.3.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
82
+ base_model.model.model.layers.3.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
83
+ base_model.model.model.layers.3.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
84
+ base_model.model.model.layers.3.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
85
+ base_model.model.model.layers.3.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
86
+ base_model.model.model.layers.3.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
87
+ base_model.model.model.layers.3.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
88
+ base_model.model.model.layers.3.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
89
+ base_model.model.model.layers.3.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
90
+ base_model.model.model.layers.3.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
91
+ base_model.model.model.layers.3.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
92
+ base_model.model.model.layers.3.input_layernorm.weight torch.Size([4096]) False
93
+ base_model.model.model.layers.3.post_attention_layernorm.weight torch.Size([4096]) False
94
+ base_model.model.model.layers.4.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
95
+ base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
96
+ base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
97
+ base_model.model.model.layers.4.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
98
+ base_model.model.model.layers.4.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
99
+ base_model.model.model.layers.4.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
100
+ base_model.model.model.layers.4.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
101
+ base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
102
+ base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
103
+ base_model.model.model.layers.4.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
104
+ base_model.model.model.layers.4.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
105
+ base_model.model.model.layers.4.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
106
+ base_model.model.model.layers.4.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
107
+ base_model.model.model.layers.4.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
108
+ base_model.model.model.layers.4.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
109
+ base_model.model.model.layers.4.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
110
+ base_model.model.model.layers.4.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
111
+ base_model.model.model.layers.4.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
112
+ base_model.model.model.layers.4.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
113
+ base_model.model.model.layers.4.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
114
+ base_model.model.model.layers.4.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
115
+ base_model.model.model.layers.4.input_layernorm.weight torch.Size([4096]) False
116
+ base_model.model.model.layers.4.post_attention_layernorm.weight torch.Size([4096]) False
117
+ base_model.model.model.layers.5.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
118
+ base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
119
+ base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
120
+ base_model.model.model.layers.5.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
121
+ base_model.model.model.layers.5.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
122
+ base_model.model.model.layers.5.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
123
+ base_model.model.model.layers.5.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
124
+ base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
125
+ base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
126
+ base_model.model.model.layers.5.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
127
+ base_model.model.model.layers.5.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
128
+ base_model.model.model.layers.5.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
129
+ base_model.model.model.layers.5.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
130
+ base_model.model.model.layers.5.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
131
+ base_model.model.model.layers.5.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
132
+ base_model.model.model.layers.5.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
133
+ base_model.model.model.layers.5.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
134
+ base_model.model.model.layers.5.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
135
+ base_model.model.model.layers.5.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
136
+ base_model.model.model.layers.5.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
137
+ base_model.model.model.layers.5.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
138
+ base_model.model.model.layers.5.input_layernorm.weight torch.Size([4096]) False
139
+ base_model.model.model.layers.5.post_attention_layernorm.weight torch.Size([4096]) False
140
+ base_model.model.model.layers.6.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
141
+ base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
142
+ base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
143
+ base_model.model.model.layers.6.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
144
+ base_model.model.model.layers.6.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
145
+ base_model.model.model.layers.6.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
146
+ base_model.model.model.layers.6.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
147
+ base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
148
+ base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
149
+ base_model.model.model.layers.6.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
150
+ base_model.model.model.layers.6.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
151
+ base_model.model.model.layers.6.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
152
+ base_model.model.model.layers.6.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
153
+ base_model.model.model.layers.6.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
154
+ base_model.model.model.layers.6.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
155
+ base_model.model.model.layers.6.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
156
+ base_model.model.model.layers.6.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
157
+ base_model.model.model.layers.6.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
158
+ base_model.model.model.layers.6.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
159
+ base_model.model.model.layers.6.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
160
+ base_model.model.model.layers.6.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
161
+ base_model.model.model.layers.6.input_layernorm.weight torch.Size([4096]) False
162
+ base_model.model.model.layers.6.post_attention_layernorm.weight torch.Size([4096]) False
163
+ base_model.model.model.layers.7.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
164
+ base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
165
+ base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
166
+ base_model.model.model.layers.7.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
167
+ base_model.model.model.layers.7.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
168
+ base_model.model.model.layers.7.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
169
+ base_model.model.model.layers.7.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
170
+ base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
171
+ base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
172
+ base_model.model.model.layers.7.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
173
+ base_model.model.model.layers.7.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
174
+ base_model.model.model.layers.7.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
175
+ base_model.model.model.layers.7.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
176
+ base_model.model.model.layers.7.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
177
+ base_model.model.model.layers.7.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
178
+ base_model.model.model.layers.7.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
179
+ base_model.model.model.layers.7.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
180
+ base_model.model.model.layers.7.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
181
+ base_model.model.model.layers.7.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
182
+ base_model.model.model.layers.7.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
183
+ base_model.model.model.layers.7.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
184
+ base_model.model.model.layers.7.input_layernorm.weight torch.Size([4096]) False
185
+ base_model.model.model.layers.7.post_attention_layernorm.weight torch.Size([4096]) False
186
+ base_model.model.model.layers.8.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
187
+ base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
188
+ base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
189
+ base_model.model.model.layers.8.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
190
+ base_model.model.model.layers.8.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
191
+ base_model.model.model.layers.8.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
192
+ base_model.model.model.layers.8.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
193
+ base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
194
+ base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
195
+ base_model.model.model.layers.8.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
196
+ base_model.model.model.layers.8.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
197
+ base_model.model.model.layers.8.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
198
+ base_model.model.model.layers.8.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
199
+ base_model.model.model.layers.8.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
200
+ base_model.model.model.layers.8.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
201
+ base_model.model.model.layers.8.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
202
+ base_model.model.model.layers.8.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
203
+ base_model.model.model.layers.8.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
204
+ base_model.model.model.layers.8.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
205
+ base_model.model.model.layers.8.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
206
+ base_model.model.model.layers.8.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
207
+ base_model.model.model.layers.8.input_layernorm.weight torch.Size([4096]) False
208
+ base_model.model.model.layers.8.post_attention_layernorm.weight torch.Size([4096]) False
209
+ base_model.model.model.layers.9.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
210
+ base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
211
+ base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
212
+ base_model.model.model.layers.9.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
213
+ base_model.model.model.layers.9.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
214
+ base_model.model.model.layers.9.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
215
+ base_model.model.model.layers.9.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
216
+ base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
217
+ base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
218
+ base_model.model.model.layers.9.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
219
+ base_model.model.model.layers.9.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
220
+ base_model.model.model.layers.9.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
221
+ base_model.model.model.layers.9.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
222
+ base_model.model.model.layers.9.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
223
+ base_model.model.model.layers.9.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
224
+ base_model.model.model.layers.9.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
225
+ base_model.model.model.layers.9.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
226
+ base_model.model.model.layers.9.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
227
+ base_model.model.model.layers.9.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
228
+ base_model.model.model.layers.9.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
229
+ base_model.model.model.layers.9.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
230
+ base_model.model.model.layers.9.input_layernorm.weight torch.Size([4096]) False
231
+ base_model.model.model.layers.9.post_attention_layernorm.weight torch.Size([4096]) False
232
+ base_model.model.model.layers.10.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
233
+ base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
234
+ base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
235
+ base_model.model.model.layers.10.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
236
+ base_model.model.model.layers.10.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
237
+ base_model.model.model.layers.10.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
238
+ base_model.model.model.layers.10.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
239
+ base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
240
+ base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
241
+ base_model.model.model.layers.10.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
242
+ base_model.model.model.layers.10.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
243
+ base_model.model.model.layers.10.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
244
+ base_model.model.model.layers.10.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
245
+ base_model.model.model.layers.10.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
246
+ base_model.model.model.layers.10.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
247
+ base_model.model.model.layers.10.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
248
+ base_model.model.model.layers.10.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
249
+ base_model.model.model.layers.10.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
250
+ base_model.model.model.layers.10.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
251
+ base_model.model.model.layers.10.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
252
+ base_model.model.model.layers.10.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
253
+ base_model.model.model.layers.10.input_layernorm.weight torch.Size([4096]) False
254
+ base_model.model.model.layers.10.post_attention_layernorm.weight torch.Size([4096]) False
255
+ base_model.model.model.layers.11.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
256
+ base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
257
+ base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
258
+ base_model.model.model.layers.11.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
259
+ base_model.model.model.layers.11.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
260
+ base_model.model.model.layers.11.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
261
+ base_model.model.model.layers.11.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
262
+ base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
263
+ base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
264
+ base_model.model.model.layers.11.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
265
+ base_model.model.model.layers.11.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
266
+ base_model.model.model.layers.11.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
267
+ base_model.model.model.layers.11.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
268
+ base_model.model.model.layers.11.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
269
+ base_model.model.model.layers.11.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
270
+ base_model.model.model.layers.11.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
271
+ base_model.model.model.layers.11.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
272
+ base_model.model.model.layers.11.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
273
+ base_model.model.model.layers.11.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
274
+ base_model.model.model.layers.11.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
275
+ base_model.model.model.layers.11.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
276
+ base_model.model.model.layers.11.input_layernorm.weight torch.Size([4096]) False
277
+ base_model.model.model.layers.11.post_attention_layernorm.weight torch.Size([4096]) False
278
+ base_model.model.model.layers.12.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
279
+ base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
280
+ base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
281
+ base_model.model.model.layers.12.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
282
+ base_model.model.model.layers.12.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
283
+ base_model.model.model.layers.12.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
284
+ base_model.model.model.layers.12.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
285
+ base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
286
+ base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
287
+ base_model.model.model.layers.12.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
288
+ base_model.model.model.layers.12.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
289
+ base_model.model.model.layers.12.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
290
+ base_model.model.model.layers.12.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
291
+ base_model.model.model.layers.12.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
292
+ base_model.model.model.layers.12.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
293
+ base_model.model.model.layers.12.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
294
+ base_model.model.model.layers.12.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
295
+ base_model.model.model.layers.12.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
296
+ base_model.model.model.layers.12.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
297
+ base_model.model.model.layers.12.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
298
+ base_model.model.model.layers.12.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
299
+ base_model.model.model.layers.12.input_layernorm.weight torch.Size([4096]) False
300
+ base_model.model.model.layers.12.post_attention_layernorm.weight torch.Size([4096]) False
301
+ base_model.model.model.layers.13.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
302
+ base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
303
+ base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
304
+ base_model.model.model.layers.13.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
305
+ base_model.model.model.layers.13.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
306
+ base_model.model.model.layers.13.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
307
+ base_model.model.model.layers.13.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
308
+ base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
309
+ base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
310
+ base_model.model.model.layers.13.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
311
+ base_model.model.model.layers.13.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
312
+ base_model.model.model.layers.13.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
313
+ base_model.model.model.layers.13.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
314
+ base_model.model.model.layers.13.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
315
+ base_model.model.model.layers.13.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
316
+ base_model.model.model.layers.13.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
317
+ base_model.model.model.layers.13.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
318
+ base_model.model.model.layers.13.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
319
+ base_model.model.model.layers.13.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
320
+ base_model.model.model.layers.13.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
321
+ base_model.model.model.layers.13.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
322
+ base_model.model.model.layers.13.input_layernorm.weight torch.Size([4096]) False
323
+ base_model.model.model.layers.13.post_attention_layernorm.weight torch.Size([4096]) False
324
+ base_model.model.model.layers.14.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
325
+ base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
326
+ base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
327
+ base_model.model.model.layers.14.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
328
+ base_model.model.model.layers.14.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
329
+ base_model.model.model.layers.14.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
330
+ base_model.model.model.layers.14.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
331
+ base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
332
+ base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
333
+ base_model.model.model.layers.14.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
334
+ base_model.model.model.layers.14.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
335
+ base_model.model.model.layers.14.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
336
+ base_model.model.model.layers.14.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
337
+ base_model.model.model.layers.14.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
338
+ base_model.model.model.layers.14.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
339
+ base_model.model.model.layers.14.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
340
+ base_model.model.model.layers.14.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
341
+ base_model.model.model.layers.14.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
342
+ base_model.model.model.layers.14.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
343
+ base_model.model.model.layers.14.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
344
+ base_model.model.model.layers.14.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
345
+ base_model.model.model.layers.14.input_layernorm.weight torch.Size([4096]) False
346
+ base_model.model.model.layers.14.post_attention_layernorm.weight torch.Size([4096]) False
347
+ base_model.model.model.layers.15.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
348
+ base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
349
+ base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
350
+ base_model.model.model.layers.15.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
351
+ base_model.model.model.layers.15.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
352
+ base_model.model.model.layers.15.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
353
+ base_model.model.model.layers.15.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
354
+ base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
355
+ base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
356
+ base_model.model.model.layers.15.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
357
+ base_model.model.model.layers.15.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
358
+ base_model.model.model.layers.15.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
359
+ base_model.model.model.layers.15.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
360
+ base_model.model.model.layers.15.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
361
+ base_model.model.model.layers.15.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
362
+ base_model.model.model.layers.15.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
363
+ base_model.model.model.layers.15.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
364
+ base_model.model.model.layers.15.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
365
+ base_model.model.model.layers.15.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
366
+ base_model.model.model.layers.15.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
367
+ base_model.model.model.layers.15.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
368
+ base_model.model.model.layers.15.input_layernorm.weight torch.Size([4096]) False
369
+ base_model.model.model.layers.15.post_attention_layernorm.weight torch.Size([4096]) False
370
+ base_model.model.model.layers.16.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
371
+ base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
372
+ base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
373
+ base_model.model.model.layers.16.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
374
+ base_model.model.model.layers.16.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
375
+ base_model.model.model.layers.16.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
376
+ base_model.model.model.layers.16.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
377
+ base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
378
+ base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
379
+ base_model.model.model.layers.16.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
380
+ base_model.model.model.layers.16.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
381
+ base_model.model.model.layers.16.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
382
+ base_model.model.model.layers.16.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
383
+ base_model.model.model.layers.16.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
384
+ base_model.model.model.layers.16.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
385
+ base_model.model.model.layers.16.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
386
+ base_model.model.model.layers.16.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
387
+ base_model.model.model.layers.16.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
388
+ base_model.model.model.layers.16.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
389
+ base_model.model.model.layers.16.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
390
+ base_model.model.model.layers.16.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
391
+ base_model.model.model.layers.16.input_layernorm.weight torch.Size([4096]) False
392
+ base_model.model.model.layers.16.post_attention_layernorm.weight torch.Size([4096]) False
393
+ base_model.model.model.layers.17.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
394
+ base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
395
+ base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
396
+ base_model.model.model.layers.17.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
397
+ base_model.model.model.layers.17.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
398
+ base_model.model.model.layers.17.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
399
+ base_model.model.model.layers.17.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
400
+ base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
401
+ base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
402
+ base_model.model.model.layers.17.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
403
+ base_model.model.model.layers.17.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
404
+ base_model.model.model.layers.17.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
405
+ base_model.model.model.layers.17.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
406
+ base_model.model.model.layers.17.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
407
+ base_model.model.model.layers.17.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
408
+ base_model.model.model.layers.17.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
409
+ base_model.model.model.layers.17.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
410
+ base_model.model.model.layers.17.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
411
+ base_model.model.model.layers.17.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
412
+ base_model.model.model.layers.17.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
413
+ base_model.model.model.layers.17.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
414
+ base_model.model.model.layers.17.input_layernorm.weight torch.Size([4096]) False
415
+ base_model.model.model.layers.17.post_attention_layernorm.weight torch.Size([4096]) False
416
+ base_model.model.model.layers.18.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
417
+ base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
418
+ base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
419
+ base_model.model.model.layers.18.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
420
+ base_model.model.model.layers.18.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
421
+ base_model.model.model.layers.18.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
422
+ base_model.model.model.layers.18.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
423
+ base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
424
+ base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
425
+ base_model.model.model.layers.18.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
426
+ base_model.model.model.layers.18.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
427
+ base_model.model.model.layers.18.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
428
+ base_model.model.model.layers.18.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
429
+ base_model.model.model.layers.18.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
430
+ base_model.model.model.layers.18.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
431
+ base_model.model.model.layers.18.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
432
+ base_model.model.model.layers.18.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
433
+ base_model.model.model.layers.18.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
434
+ base_model.model.model.layers.18.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
435
+ base_model.model.model.layers.18.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
436
+ base_model.model.model.layers.18.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
437
+ base_model.model.model.layers.18.input_layernorm.weight torch.Size([4096]) False
438
+ base_model.model.model.layers.18.post_attention_layernorm.weight torch.Size([4096]) False
439
+ base_model.model.model.layers.19.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
440
+ base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
441
+ base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
442
+ base_model.model.model.layers.19.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
443
+ base_model.model.model.layers.19.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
444
+ base_model.model.model.layers.19.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
445
+ base_model.model.model.layers.19.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
446
+ base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
447
+ base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
448
+ base_model.model.model.layers.19.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
449
+ base_model.model.model.layers.19.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
450
+ base_model.model.model.layers.19.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
451
+ base_model.model.model.layers.19.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
452
+ base_model.model.model.layers.19.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
453
+ base_model.model.model.layers.19.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
454
+ base_model.model.model.layers.19.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
455
+ base_model.model.model.layers.19.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
456
+ base_model.model.model.layers.19.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
457
+ base_model.model.model.layers.19.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
458
+ base_model.model.model.layers.19.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
459
+ base_model.model.model.layers.19.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
460
+ base_model.model.model.layers.19.input_layernorm.weight torch.Size([4096]) False
461
+ base_model.model.model.layers.19.post_attention_layernorm.weight torch.Size([4096]) False
462
+ base_model.model.model.layers.20.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
463
+ base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
464
+ base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
465
+ base_model.model.model.layers.20.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
466
+ base_model.model.model.layers.20.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
467
+ base_model.model.model.layers.20.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
468
+ base_model.model.model.layers.20.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
469
+ base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
470
+ base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
471
+ base_model.model.model.layers.20.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
472
+ base_model.model.model.layers.20.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
473
+ base_model.model.model.layers.20.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
474
+ base_model.model.model.layers.20.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
475
+ base_model.model.model.layers.20.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
476
+ base_model.model.model.layers.20.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
477
+ base_model.model.model.layers.20.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
478
+ base_model.model.model.layers.20.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
479
+ base_model.model.model.layers.20.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
480
+ base_model.model.model.layers.20.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
481
+ base_model.model.model.layers.20.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
482
+ base_model.model.model.layers.20.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
483
+ base_model.model.model.layers.20.input_layernorm.weight torch.Size([4096]) False
484
+ base_model.model.model.layers.20.post_attention_layernorm.weight torch.Size([4096]) False
485
+ base_model.model.model.layers.21.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
486
+ base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
487
+ base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
488
+ base_model.model.model.layers.21.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
489
+ base_model.model.model.layers.21.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
490
+ base_model.model.model.layers.21.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
491
+ base_model.model.model.layers.21.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
492
+ base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
493
+ base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
494
+ base_model.model.model.layers.21.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
495
+ base_model.model.model.layers.21.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
496
+ base_model.model.model.layers.21.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
497
+ base_model.model.model.layers.21.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
498
+ base_model.model.model.layers.21.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
499
+ base_model.model.model.layers.21.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
500
+ base_model.model.model.layers.21.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
501
+ base_model.model.model.layers.21.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
502
+ base_model.model.model.layers.21.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
503
+ base_model.model.model.layers.21.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
504
+ base_model.model.model.layers.21.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
505
+ base_model.model.model.layers.21.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
506
+ base_model.model.model.layers.21.input_layernorm.weight torch.Size([4096]) False
507
+ base_model.model.model.layers.21.post_attention_layernorm.weight torch.Size([4096]) False
508
+ base_model.model.model.layers.22.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
509
+ base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
510
+ base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
511
+ base_model.model.model.layers.22.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
512
+ base_model.model.model.layers.22.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
513
+ base_model.model.model.layers.22.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
514
+ base_model.model.model.layers.22.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
515
+ base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
516
+ base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
517
+ base_model.model.model.layers.22.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
518
+ base_model.model.model.layers.22.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
519
+ base_model.model.model.layers.22.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
520
+ base_model.model.model.layers.22.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
521
+ base_model.model.model.layers.22.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
522
+ base_model.model.model.layers.22.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
523
+ base_model.model.model.layers.22.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
524
+ base_model.model.model.layers.22.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
525
+ base_model.model.model.layers.22.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
526
+ base_model.model.model.layers.22.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
527
+ base_model.model.model.layers.22.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
528
+ base_model.model.model.layers.22.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
529
+ base_model.model.model.layers.22.input_layernorm.weight torch.Size([4096]) False
530
+ base_model.model.model.layers.22.post_attention_layernorm.weight torch.Size([4096]) False
531
+ base_model.model.model.layers.23.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
532
+ base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
533
+ base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
534
+ base_model.model.model.layers.23.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
535
+ base_model.model.model.layers.23.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
536
+ base_model.model.model.layers.23.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
537
+ base_model.model.model.layers.23.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
538
+ base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
539
+ base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
540
+ base_model.model.model.layers.23.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
541
+ base_model.model.model.layers.23.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
542
+ base_model.model.model.layers.23.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
543
+ base_model.model.model.layers.23.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
544
+ base_model.model.model.layers.23.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
545
+ base_model.model.model.layers.23.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
546
+ base_model.model.model.layers.23.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
547
+ base_model.model.model.layers.23.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
548
+ base_model.model.model.layers.23.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
549
+ base_model.model.model.layers.23.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
550
+ base_model.model.model.layers.23.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
551
+ base_model.model.model.layers.23.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
552
+ base_model.model.model.layers.23.input_layernorm.weight torch.Size([4096]) False
553
+ base_model.model.model.layers.23.post_attention_layernorm.weight torch.Size([4096]) False
554
+ base_model.model.model.layers.24.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
555
+ base_model.model.model.layers.24.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
556
+ base_model.model.model.layers.24.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
557
+ base_model.model.model.layers.24.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
558
+ base_model.model.model.layers.24.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
559
+ base_model.model.model.layers.24.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
560
+ base_model.model.model.layers.24.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
561
+ base_model.model.model.layers.24.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
562
+ base_model.model.model.layers.24.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
563
+ base_model.model.model.layers.24.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
564
+ base_model.model.model.layers.24.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
565
+ base_model.model.model.layers.24.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
566
+ base_model.model.model.layers.24.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
567
+ base_model.model.model.layers.24.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
568
+ base_model.model.model.layers.24.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
569
+ base_model.model.model.layers.24.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
570
+ base_model.model.model.layers.24.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
571
+ base_model.model.model.layers.24.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
572
+ base_model.model.model.layers.24.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
573
+ base_model.model.model.layers.24.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
574
+ base_model.model.model.layers.24.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
575
+ base_model.model.model.layers.24.input_layernorm.weight torch.Size([4096]) False
576
+ base_model.model.model.layers.24.post_attention_layernorm.weight torch.Size([4096]) False
577
+ base_model.model.model.layers.25.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
578
+ base_model.model.model.layers.25.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
579
+ base_model.model.model.layers.25.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
580
+ base_model.model.model.layers.25.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
581
+ base_model.model.model.layers.25.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
582
+ base_model.model.model.layers.25.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
583
+ base_model.model.model.layers.25.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
584
+ base_model.model.model.layers.25.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
585
+ base_model.model.model.layers.25.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
586
+ base_model.model.model.layers.25.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
587
+ base_model.model.model.layers.25.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
588
+ base_model.model.model.layers.25.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
589
+ base_model.model.model.layers.25.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
590
+ base_model.model.model.layers.25.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
591
+ base_model.model.model.layers.25.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
592
+ base_model.model.model.layers.25.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
593
+ base_model.model.model.layers.25.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
594
+ base_model.model.model.layers.25.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
595
+ base_model.model.model.layers.25.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
596
+ base_model.model.model.layers.25.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
597
+ base_model.model.model.layers.25.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
598
+ base_model.model.model.layers.25.input_layernorm.weight torch.Size([4096]) False
599
+ base_model.model.model.layers.25.post_attention_layernorm.weight torch.Size([4096]) False
600
+ base_model.model.model.layers.26.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
601
+ base_model.model.model.layers.26.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
602
+ base_model.model.model.layers.26.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
603
+ base_model.model.model.layers.26.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
604
+ base_model.model.model.layers.26.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
605
+ base_model.model.model.layers.26.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
606
+ base_model.model.model.layers.26.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
607
+ base_model.model.model.layers.26.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
608
+ base_model.model.model.layers.26.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
609
+ base_model.model.model.layers.26.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
610
+ base_model.model.model.layers.26.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
611
+ base_model.model.model.layers.26.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
612
+ base_model.model.model.layers.26.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
613
+ base_model.model.model.layers.26.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
614
+ base_model.model.model.layers.26.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
615
+ base_model.model.model.layers.26.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
616
+ base_model.model.model.layers.26.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
617
+ base_model.model.model.layers.26.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
618
+ base_model.model.model.layers.26.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
619
+ base_model.model.model.layers.26.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
620
+ base_model.model.model.layers.26.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
621
+ base_model.model.model.layers.26.input_layernorm.weight torch.Size([4096]) False
622
+ base_model.model.model.layers.26.post_attention_layernorm.weight torch.Size([4096]) False
623
+ base_model.model.model.layers.27.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
624
+ base_model.model.model.layers.27.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
625
+ base_model.model.model.layers.27.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
626
+ base_model.model.model.layers.27.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
627
+ base_model.model.model.layers.27.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
628
+ base_model.model.model.layers.27.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
629
+ base_model.model.model.layers.27.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
630
+ base_model.model.model.layers.27.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
631
+ base_model.model.model.layers.27.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
632
+ base_model.model.model.layers.27.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
633
+ base_model.model.model.layers.27.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
634
+ base_model.model.model.layers.27.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
635
+ base_model.model.model.layers.27.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
636
+ base_model.model.model.layers.27.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
637
+ base_model.model.model.layers.27.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
638
+ base_model.model.model.layers.27.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
639
+ base_model.model.model.layers.27.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
640
+ base_model.model.model.layers.27.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
641
+ base_model.model.model.layers.27.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
642
+ base_model.model.model.layers.27.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
643
+ base_model.model.model.layers.27.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
644
+ base_model.model.model.layers.27.input_layernorm.weight torch.Size([4096]) False
645
+ base_model.model.model.layers.27.post_attention_layernorm.weight torch.Size([4096]) False
646
+ base_model.model.model.layers.28.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
647
+ base_model.model.model.layers.28.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
648
+ base_model.model.model.layers.28.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
649
+ base_model.model.model.layers.28.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
650
+ base_model.model.model.layers.28.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
651
+ base_model.model.model.layers.28.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
652
+ base_model.model.model.layers.28.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
653
+ base_model.model.model.layers.28.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
654
+ base_model.model.model.layers.28.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
655
+ base_model.model.model.layers.28.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
656
+ base_model.model.model.layers.28.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
657
+ base_model.model.model.layers.28.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
658
+ base_model.model.model.layers.28.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
659
+ base_model.model.model.layers.28.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
660
+ base_model.model.model.layers.28.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
661
+ base_model.model.model.layers.28.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
662
+ base_model.model.model.layers.28.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
663
+ base_model.model.model.layers.28.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
664
+ base_model.model.model.layers.28.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
665
+ base_model.model.model.layers.28.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
666
+ base_model.model.model.layers.28.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
667
+ base_model.model.model.layers.28.input_layernorm.weight torch.Size([4096]) False
668
+ base_model.model.model.layers.28.post_attention_layernorm.weight torch.Size([4096]) False
669
+ base_model.model.model.layers.29.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
670
+ base_model.model.model.layers.29.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
671
+ base_model.model.model.layers.29.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
672
+ base_model.model.model.layers.29.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
673
+ base_model.model.model.layers.29.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
674
+ base_model.model.model.layers.29.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
675
+ base_model.model.model.layers.29.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
676
+ base_model.model.model.layers.29.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
677
+ base_model.model.model.layers.29.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
678
+ base_model.model.model.layers.29.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
679
+ base_model.model.model.layers.29.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
680
+ base_model.model.model.layers.29.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
681
+ base_model.model.model.layers.29.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
682
+ base_model.model.model.layers.29.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
683
+ base_model.model.model.layers.29.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
684
+ base_model.model.model.layers.29.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
685
+ base_model.model.model.layers.29.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
686
+ base_model.model.model.layers.29.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
687
+ base_model.model.model.layers.29.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
688
+ base_model.model.model.layers.29.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
689
+ base_model.model.model.layers.29.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
690
+ base_model.model.model.layers.29.input_layernorm.weight torch.Size([4096]) False
691
+ base_model.model.model.layers.29.post_attention_layernorm.weight torch.Size([4096]) False
692
+ base_model.model.model.layers.30.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
693
+ base_model.model.model.layers.30.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
694
+ base_model.model.model.layers.30.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
695
+ base_model.model.model.layers.30.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
696
+ base_model.model.model.layers.30.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
697
+ base_model.model.model.layers.30.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
698
+ base_model.model.model.layers.30.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
699
+ base_model.model.model.layers.30.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
700
+ base_model.model.model.layers.30.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
701
+ base_model.model.model.layers.30.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
702
+ base_model.model.model.layers.30.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
703
+ base_model.model.model.layers.30.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
704
+ base_model.model.model.layers.30.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
705
+ base_model.model.model.layers.30.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
706
+ base_model.model.model.layers.30.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
707
+ base_model.model.model.layers.30.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
708
+ base_model.model.model.layers.30.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
709
+ base_model.model.model.layers.30.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
710
+ base_model.model.model.layers.30.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
711
+ base_model.model.model.layers.30.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
712
+ base_model.model.model.layers.30.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
713
+ base_model.model.model.layers.30.input_layernorm.weight torch.Size([4096]) False
714
+ base_model.model.model.layers.30.post_attention_layernorm.weight torch.Size([4096]) False
715
+ base_model.model.model.layers.31.self_attn.q_proj.base_layer.weight torch.Size([4096, 4096]) False
716
+ base_model.model.model.layers.31.self_attn.q_proj.lora_A.default.weight torch.Size([64, 4096]) False
717
+ base_model.model.model.layers.31.self_attn.q_proj.lora_B.default.weight torch.Size([4096, 64]) False
718
+ base_model.model.model.layers.31.self_attn.k_proj.base_layer.weight torch.Size([1024, 4096]) False
719
+ base_model.model.model.layers.31.self_attn.k_proj.lora_A.default.weight torch.Size([64, 4096]) False
720
+ base_model.model.model.layers.31.self_attn.k_proj.lora_B.default.weight torch.Size([1024, 64]) False
721
+ base_model.model.model.layers.31.self_attn.v_proj.base_layer.weight torch.Size([1024, 4096]) False
722
+ base_model.model.model.layers.31.self_attn.v_proj.lora_A.default.weight torch.Size([64, 4096]) False
723
+ base_model.model.model.layers.31.self_attn.v_proj.lora_B.default.weight torch.Size([1024, 64]) False
724
+ base_model.model.model.layers.31.self_attn.o_proj.base_layer.weight torch.Size([4096, 4096]) False
725
+ base_model.model.model.layers.31.self_attn.o_proj.lora_A.default.weight torch.Size([64, 4096]) False
726
+ base_model.model.model.layers.31.self_attn.o_proj.lora_B.default.weight torch.Size([4096, 64]) False
727
+ base_model.model.model.layers.31.mlp.gate_proj.base_layer.weight torch.Size([14336, 4096]) False
728
+ base_model.model.model.layers.31.mlp.gate_proj.lora_A.default.weight torch.Size([64, 4096]) False
729
+ base_model.model.model.layers.31.mlp.gate_proj.lora_B.default.weight torch.Size([14336, 64]) False
730
+ base_model.model.model.layers.31.mlp.up_proj.base_layer.weight torch.Size([14336, 4096]) False
731
+ base_model.model.model.layers.31.mlp.up_proj.lora_A.default.weight torch.Size([64, 4096]) False
732
+ base_model.model.model.layers.31.mlp.up_proj.lora_B.default.weight torch.Size([14336, 64]) False
733
+ base_model.model.model.layers.31.mlp.down_proj.base_layer.weight torch.Size([4096, 14336]) False
734
+ base_model.model.model.layers.31.mlp.down_proj.lora_A.default.weight torch.Size([64, 14336]) False
735
+ base_model.model.model.layers.31.mlp.down_proj.lora_B.default.weight torch.Size([4096, 64]) False
736
+ base_model.model.model.layers.31.input_layernorm.weight torch.Size([4096]) False
737
+ base_model.model.model.layers.31.post_attention_layernorm.weight torch.Size([4096]) False
738
+ base_model.model.model.norm.weight torch.Size([4096]) False
739
+ base_model.model.model.vision_clip_lmm_projector.0.weight torch.Size([4096, 1024]) True
740
+ base_model.model.model.vision_clip_lmm_projector.0.bias torch.Size([4096]) True
741
+ base_model.model.model.vision_clip_lmm_projector.2.weight torch.Size([4096, 4096]) True
742
+ base_model.model.model.vision_clip_lmm_projector.2.bias torch.Size([4096]) True
743
+ base_model.model.lm_head.weight torch.Size([32000, 4096]) False
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:956aaa1108300c5753ebe9b02ec008d5961bb3ff113f6c3fe3afa07cc9991e95
3
+ size 41961255
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff