klyang commited on
Commit
f896881
·
1 Parent(s): 5a8cc8c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md CHANGED
@@ -1,3 +1,65 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - f1
7
+ tags:
8
+ - medical
9
  ---
10
+
11
+ # MentaLLaMA-chat-13B
12
+
13
+ MentaLLaMA-chat-13B is part of the [MentaLLaMA](https://github.com/SteveKGYang/MentalLLaMA) project, the first open-source large language model (LLM) series for
14
+ interpretable mental health analysis with instruction-following capability.
15
+ The model is expected to make complex mental health analyses for various mental health conditions and give reliable explanations for each of its predictions.
16
+ It is fine-tuned on the IMHI dataset with 75K high-quality natural language instructions to boost its performance in downstream tasks.
17
+ We perform a comprehensive evaluation on the IMHI benchmark with 20K test samples. The result shows that MentalLLaMA approaches state-of-the-art discriminative
18
+ methods in correctness and generates high-quality explanations.
19
+
20
+ ## Other Models in MentaLLaMA
21
+
22
+ In addition to MentaLLaMA-chat-13B, the MentaLLaMA project includes another model: MentaLLaMA-chat-7B, MentalBART, MentalT5.
23
+
24
+ - **MentaLLaMA-chat-7B**: This model
25
+
26
+ - **MentalBART**: This model
27
+
28
+ - **MentalT5**: This model
29
+
30
+ ## Usage
31
+
32
+ You can use the MentaLLaMA-chat-13B model in your Python project with the Hugging Face Transformers library. Here is a simple example of how to load the model:
33
+
34
+ ```python
35
+ from transformers import LlamaTokenizer, LlamaForCausalLM
36
+ tokenizer = LlamaTokenizer.from_pretrained('klyang/MentaLLaMA-chat-13B')
37
+ model = LlamaForCausalLM.from_pretrained('klyang/MentaLLaMA-chat-13B', device_map='auto')
38
+ ```
39
+
40
+ In this example, LlamaTokenizer is used to load the tokenizer, and LlamaForCausalLM is used to load the model. The `device_map='auto'` argument is used to automatically
41
+ use the GPU if it's available.
42
+
43
+ ## License
44
+
45
+ MentaLLaMA-chat-13B is licensed under MIT. For more details, please see the MIT file.
46
+
47
+ ## About
48
+
49
+ This model is part of the MentaLLaMA project.
50
+ For more information, you can visit the [MentaLLaMA](https://github.com/SteveKGYang/MentalLLaMA) project on GitHub.
51
+
52
+ ## Citation
53
+
54
+ If you use MentaLLaMA-chat-7B in your work, please cite our paper:
55
+
56
+ ```bibtex
57
+ @misc{yang2023mentalllama,
58
+ title={MentalLLaMA: Interpretable Mental Health Analysis on Social Media with Large Language Models},
59
+ author={Kailai Yang and Tianlin Zhang and Ziyan Kuang and Qianqian Xie and Sophia Ananiadou},
60
+ year={2023},
61
+ eprint={2309.13567},
62
+ archivePrefix={arXiv},
63
+ primaryClass={cs.CL}
64
+ }
65
+ ```