|
|
|
import json |
|
import logging |
|
import os |
|
import re |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from packaging import version |
|
from torch import nn |
|
|
|
import transformers |
|
from transformers import ( |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
Wav2Vec2CTCTokenizer, |
|
Wav2Vec2FeatureExtractor, |
|
Wav2Vec2ForCTC, |
|
Wav2Vec2Processor, |
|
is_apex_available, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process |
|
|
|
|
|
if is_apex_available(): |
|
from apex import amp |
|
|
|
|
|
if version.parse(torch.__version__) >= version.parse("1.6"): |
|
_is_native_amp_available = True |
|
from torch.cuda.amp import autocast |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def list_field(default=None, metadata=None): |
|
return field(default_factory=lambda: default, metadata=metadata) |
|
|
|
import wandb |
|
wandb.login() |
|
os.environ['WANDB_PROJECT'] = "ar-base-30e-hyperv3" |
|
os.environ['WANDB_LOG_MODEL'] = "true" |
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
freeze_feature_extractor: Optional[bool] = field( |
|
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} |
|
) |
|
attention_dropout: Optional[float] = field( |
|
default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} |
|
) |
|
activation_dropout: Optional[float] = field( |
|
default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} |
|
) |
|
hidden_dropout: Optional[float] = field( |
|
default=0.1, |
|
metadata={ |
|
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." |
|
}, |
|
) |
|
feat_proj_dropout: Optional[float] = field( |
|
default=0.1, |
|
metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, |
|
) |
|
mask_time_prob: Optional[float] = field( |
|
default=0.05, |
|
metadata={ |
|
"help": "Propability of each feature vector along the time axis to be chosen as the start of the vector" |
|
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" |
|
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." |
|
}, |
|
) |
|
gradient_checkpointing: Optional[bool] = field( |
|
default=True, |
|
metadata={ |
|
"help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass." |
|
}, |
|
) |
|
layerdrop: Optional[float] = field(default=0.0, metadata={"help": "The LayerDrop probability."}) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
|
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_split_name: Optional[str] = field( |
|
default="train+validation", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_val_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
chars_to_ignore: List[str] = list_field( |
|
default=[",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�"], |
|
metadata={"help": "A list of characters to remove from the transcripts."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataCollatorCTCWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor (:class:`~transformers.Wav2Vec2Processor`) |
|
The processor used for proccessing the data. |
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
max_length (:obj:`int`, `optional`): |
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). |
|
max_length_labels (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` returned list and optionally padding length (see above). |
|
pad_to_multiple_of (:obj:`int`, `optional`): |
|
If set will pad the sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= |
|
7.5 (Volta). |
|
""" |
|
|
|
processor: Wav2Vec2Processor |
|
padding: Union[bool, str] = True |
|
max_length: Optional[int] = None |
|
max_length_labels: Optional[int] = None |
|
pad_to_multiple_of: Optional[int] = None |
|
pad_to_multiple_of_labels: Optional[int] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: |
|
|
|
|
|
input_features = [{"input_values": feature["input_values"]} for feature in features] |
|
label_features = [{"input_ids": feature["labels"]} for feature in features] |
|
|
|
batch = self.processor.pad( |
|
input_features, |
|
padding=self.padding, |
|
max_length=self.max_length, |
|
pad_to_multiple_of=self.pad_to_multiple_of, |
|
return_tensors="pt", |
|
) |
|
with self.processor.as_target_processor(): |
|
labels_batch = self.processor.pad( |
|
label_features, |
|
padding=self.padding, |
|
max_length=self.max_length_labels, |
|
pad_to_multiple_of=self.pad_to_multiple_of_labels, |
|
return_tensors="pt", |
|
) |
|
|
|
|
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) |
|
|
|
batch["labels"] = labels |
|
|
|
return batch |
|
|
|
|
|
class CTCTrainer(Trainer): |
|
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: |
|
""" |
|
Perform a training step on a batch of inputs. |
|
|
|
Subclass and override to inject custom behavior. |
|
|
|
Args: |
|
model (:obj:`nn.Module`): |
|
The model to train. |
|
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): |
|
The inputs and targets of the model. |
|
|
|
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the |
|
argument :obj:`labels`. Check your model's documentation for all accepted arguments. |
|
|
|
Return: |
|
:obj:`torch.Tensor`: The tensor with training loss on this batch. |
|
""" |
|
|
|
model.train() |
|
inputs = self._prepare_inputs(inputs) |
|
|
|
if self.use_amp: |
|
with autocast(): |
|
loss = self.compute_loss(model, inputs) |
|
else: |
|
loss = self.compute_loss(model, inputs) |
|
|
|
if self.args.n_gpu > 1: |
|
if model.module.config.ctc_loss_reduction == "mean": |
|
loss = loss.mean() |
|
elif model.module.config.ctc_loss_reduction == "sum": |
|
loss = loss.sum() / (inputs["labels"] >= 0).sum() |
|
else: |
|
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") |
|
|
|
if self.args.gradient_accumulation_steps > 1: |
|
loss = loss / self.args.gradient_accumulation_steps |
|
|
|
if self.use_amp: |
|
self.scaler.scale(loss).backward() |
|
elif self.use_apex: |
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
elif self.deepspeed: |
|
self.deepspeed.backward(loss) |
|
else: |
|
loss.backward() |
|
|
|
return loss.detach() |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
if is_main_process(training_args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
train_dataset = datasets.load_dataset( |
|
"common_voice", data_args.dataset_config_name, split=data_args.train_split_name, cache_dir=model_args.cache_dir |
|
) |
|
eval_dataset = datasets.load_dataset("common_voice", data_args.dataset_config_name, split="test", cache_dir=model_args.cache_dir) |
|
|
|
|
|
|
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\؟\_\؛\ـ\—]' |
|
|
|
def remove_special_characters(batch): |
|
batch["text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " |
|
return batch |
|
|
|
train_dataset = train_dataset.map(remove_special_characters, remove_columns=["sentence"]) |
|
eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"]) |
|
|
|
def extract_all_chars(batch): |
|
all_text = " ".join(batch["text"]) |
|
vocab = list(set(all_text)) |
|
return {"vocab": [vocab], "all_text": [all_text]} |
|
|
|
vocab_train = train_dataset.map( |
|
extract_all_chars, |
|
batched=True, |
|
batch_size=-1, |
|
keep_in_memory=True, |
|
remove_columns=train_dataset.column_names, |
|
) |
|
vocab_test = train_dataset.map( |
|
extract_all_chars, |
|
batched=True, |
|
batch_size=-1, |
|
keep_in_memory=True, |
|
remove_columns=eval_dataset.column_names, |
|
) |
|
|
|
vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0])) |
|
vocab_dict = {v: k for k, v in enumerate(vocab_list)} |
|
vocab_dict["|"] = vocab_dict[" "] |
|
del vocab_dict[" "] |
|
vocab_dict["[UNK]"] = len(vocab_dict) |
|
vocab_dict["[PAD]"] = len(vocab_dict) |
|
|
|
with open("vocab.json", "w") as vocab_file: |
|
json.dump(vocab_dict, vocab_file) |
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = Wav2Vec2CTCTokenizer( |
|
"vocab.json", |
|
unk_token="[UNK]", |
|
pad_token="[PAD]", |
|
word_delimiter_token="|", |
|
) |
|
feature_extractor = Wav2Vec2FeatureExtractor( |
|
feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True |
|
) |
|
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) |
|
model = Wav2Vec2ForCTC.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
activation_dropout=model_args.activation_dropout, |
|
attention_dropout=model_args.attention_dropout, |
|
hidden_dropout=model_args.hidden_dropout, |
|
feat_proj_dropout=model_args.feat_proj_dropout, |
|
mask_time_prob=model_args.mask_time_prob, |
|
gradient_checkpointing=model_args.gradient_checkpointing, |
|
layerdrop=model_args.layerdrop, |
|
ctc_loss_reduction="mean", |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
vocab_size=len(processor.tokenizer), |
|
) |
|
|
|
if data_args.max_train_samples is not None: |
|
train_dataset = train_dataset.select(range(data_args.max_train_samples)) |
|
|
|
if data_args.max_val_samples is not None: |
|
eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) |
|
|
|
resampler = torchaudio.transforms.Resample(32_000, 16_000) |
|
|
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
batch["sampling_rate"] = 16_000 |
|
batch["target_text"] = batch["text"] |
|
return batch |
|
|
|
train_dataset = train_dataset.map( |
|
speech_file_to_array_fn, |
|
remove_columns=train_dataset.column_names, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
eval_dataset = eval_dataset.map( |
|
speech_file_to_array_fn, |
|
remove_columns=eval_dataset.column_names, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
|
|
def prepare_dataset(batch): |
|
|
|
assert ( |
|
len(set(batch["sampling_rate"])) == 1 |
|
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." |
|
batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values |
|
|
|
with processor.as_target_processor(): |
|
batch["labels"] = processor(batch["target_text"]).input_ids |
|
return batch |
|
|
|
train_dataset = train_dataset.map( |
|
prepare_dataset, |
|
remove_columns=train_dataset.column_names, |
|
batch_size=training_args.per_device_train_batch_size, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
eval_dataset = eval_dataset.map( |
|
prepare_dataset, |
|
remove_columns=eval_dataset.column_names, |
|
batch_size=training_args.per_device_train_batch_size, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
|
|
|
|
wer_metric = datasets.load_metric("wer") |
|
|
|
def compute_metrics(pred): |
|
pred_logits = pred.predictions |
|
pred_ids = np.argmax(pred_logits, axis=-1) |
|
|
|
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id |
|
|
|
pred_str = processor.batch_decode(pred_ids) |
|
|
|
label_str = processor.batch_decode(pred.label_ids, group_tokens=False) |
|
|
|
wer = wer_metric.compute(predictions=pred_str, references=label_str) |
|
|
|
return {"wer": wer} |
|
|
|
if model_args.freeze_feature_extractor: |
|
model.freeze_feature_extractor() |
|
|
|
|
|
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) |
|
|
|
|
|
trainer = CTCTrainer( |
|
model=model, |
|
data_collator=data_collator, |
|
args=training_args, |
|
compute_metrics=compute_metrics, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
|
tokenizer=processor.feature_extractor, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
if last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
elif os.path.isdir(model_args.model_name_or_path): |
|
checkpoint = model_args.model_name_or_path |
|
else: |
|
checkpoint = None |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
|
|
|
|
if is_main_process(training_args.local_rank): |
|
processor.save_pretrained(training_args.output_dir) |
|
|
|
metrics = train_result.metrics |
|
max_train_samples = ( |
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
metrics = trainer.evaluate() |
|
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset) |
|
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|