File size: 2,089 Bytes
7f83d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7a643
7f83d46
 
 
 
 
 
 
 
 
7a7a643
 
7f83d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7a643
 
 
 
7f83d46
 
 
 
7a7a643
7f83d46
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
language:
- id
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- kneth90/test_data_set_2
metrics:
- wer
model-index:
- name: Whisper Small ID - Kenn
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Test Dataset 2
      type: kneth90/test_data_set_2
      args: 'config: hi, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 63.92405063291139
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small ID - Kenn

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Test Dataset 2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6740
- Wer: 63.9241

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Wer     |
|:-------------:|:--------:|:----:|:---------------:|:-------:|
| 0.0008        | 41.6667  | 1000 | 1.5316          | 64.9789 |
| 0.0001        | 83.3333  | 2000 | 1.6316          | 64.3460 |
| 0.0           | 125.0    | 3000 | 1.6618          | 64.5570 |
| 0.0           | 166.6667 | 4000 | 1.6740          | 63.9241 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0