This is the model card for HateBERTimbau. You may be interested in some of the other models from the kNOwHATE project.


HateBERTimbau

HateBERTimbau is a foundation, large language model for European Portuguese from Portugal for Hate Speech content.

It is an encoder of the BERT family, based on the neural architecture Transformer and developed over the BERTimbau model, retrained on a dataset of 229,103 tweets specifically focused on potential hate speech.

Model Description

Several models were developed by fine-tuning Base HateBERTimbau for Hate Speech detection present in the table bellow:

Uses

You can use this model directly with a pipeline for masked language modeling:

from transformers import pipeline
unmasker = pipeline('fill-mask', model='knowhate/HateBERTimbau')

unmasker("Os [MASK] são todos uns animais, deviam voltar para a sua terra.")

[{'score': 0.6771652698516846,
  'token': 12714,
  'token_str': 'africanos',
  'sequence': 'Os africanos são todos uns animais, deviam voltar para a sua terra.'},
 {'score': 0.08679857850074768,
  'token': 15389,
  'token_str': 'homossexuais',
  'sequence': 'Os homossexuais são todos uns animais, deviam voltar para a sua terra.'},
 {'score': 0.03806231543421745,
  'token': 4966,
  'token_str': 'portugueses',
  'sequence': 'Os portugueses são todos uns animais, deviam voltar para a sua terra.'},
 {'score': 0.035253893584012985,
  'token': 16773,
  'token_str': 'Portugueses',
  'sequence': 'Os Portugueses são todos uns animais, deviam voltar para a sua terra.'},
 {'score': 0.023521048948168755,
  'token': 8618,
  'token_str': 'brancos',
  'sequence': 'Os brancos são todos uns animais, deviam voltar para a sua terra.'}]

Or this model can be used by fine-tuning it for a specific task/dataset:

from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import load_dataset

tokenizer = AutoTokenizer.from_pretrained("knowhate/HateBERTimbau")
model = AutoModelForSequenceClassification.from_pretrained("knowhate/HateBERTimbau")
dataset = load_dataset("knowhate/youtube-train")

def tokenize_function(examples):
    return tokenizer(examples["sentence1"], examples["sentence2"], padding="max_length", truncation=True)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

training_args = TrainingArguments(output_dir="hatebertimbau", evaluation_strategy="epoch")
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"],
)

trainer.train()

Training

Data

229,103 tweets associated with offensive content were used to retrain the base model.

Training Hyperparameters

  • Batch Size: 4 samples
  • Epochs: 100
  • Learning Rate: 5e-5 with Adam optimizer
  • Maximum Sequence Length: 512 sentence pieces

Testing

Data

We used two different datasets for testing, one for YouTube comments here and another for Tweets here.

Hate Speech Classification Results (with no fine-tuning)

Dataset Precision Recall F1-score
YouTube 0.928 0.108 0.193
Twitter 0.686 0.211 0.323

BibTeX Citation

@inproceedings{DBLP:conf/slate/MatosS00B22,
  author       = {Bernardo Cunha Matos and
                  Raquel Bento Santos and
                  Paula Carvalho and
                  Ricardo Ribeiro and
                  Fernando Batista},
  editor       = {Jo{\~{a}}o Cordeiro and
                  Maria Jo{\~{a}}o Pereira and
                  Nuno F. Rodrigues and
                  Sebasti{\~{a}}o Pais},
  title        = {Comparing Different Approaches for Detecting Hate Speech in Online
                  Portuguese Comments},
  booktitle    = {11th Symposium on Languages, Applications and Technologies, {SLATE}
                  2022, July 14-15, 2022, Universidade da Beira Interior, Covilh{\~{a}},
                  Portugal},
series       = {OASIcs},
  volume       = {104},
  pages        = {10:1--10:12},
  publisher    = {Schloss Dagstuhl - Leibniz-Zentrum f{\"{u}}r Informatik},
  year         = {2022},
  url          = {https://doi.org/10.4230/OASIcs.SLATE.2022.10},
  doi          = {10.4230/OASICS.SLATE.2022.10},
}

Acknowledgements

This work was funded in part by the European Union under Grant CERV-2021-EQUAL (101049306). However the views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or Knowhate Project. Neither the European Union nor the Knowhate Project can be held responsible.

Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.