medquad
Browse files- README.md +38 -181
- adapter_model.safetensors +1 -1
- all_results.json +9 -0
- tokenizer_config.json +0 -4
- train_results.json +9 -0
- trainer_state.json +192 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,56 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
###
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
model_name: medquad_finetuned
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
- trl
|
7 |
+
- sft
|
8 |
+
licence: license
|
9 |
---
|
10 |
|
11 |
+
# Model Card for medquad_finetuned
|
12 |
|
13 |
+
This model is a fine-tuned version of [None](https://huggingface.co/None).
|
14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
15 |
|
16 |
+
## Quick start
|
17 |
|
18 |
+
```python
|
19 |
+
from transformers import pipeline
|
20 |
|
21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
22 |
+
generator = pipeline("text-generation", model="komus/medquad_finetuned", device="cuda")
|
23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
24 |
+
print(output["generated_text"])
|
25 |
+
```
|
26 |
|
27 |
+
## Training procedure
|
28 |
|
|
|
29 |
|
|
|
30 |
|
31 |
+
This model was trained with SFT.
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
### Framework versions
|
34 |
|
35 |
+
- TRL: 0.12.1
|
36 |
+
- Transformers: 4.47.0.dev0
|
37 |
+
- Pytorch: 2.4.0
|
38 |
+
- Datasets: 2.21.0
|
39 |
+
- Tokenizers: 0.20.3
|
40 |
|
41 |
+
## Citations
|
|
|
|
|
42 |
|
|
|
43 |
|
|
|
44 |
|
45 |
+
Cite TRL as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@misc{vonwerra2022trl,
|
49 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
50 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
51 |
+
year = 2020,
|
52 |
+
journal = {GitHub repository},
|
53 |
+
publisher = {GitHub},
|
54 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
55 |
+
}
|
56 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 19644664
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7eefbc60c75eef82bd84155bf83b4cbc42ebe86ca062e3169bb4b11bda454bea
|
3 |
size 19644664
|
all_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"total_flos": 854477494026240.0,
|
4 |
+
"train_loss": 2.395888161659241,
|
5 |
+
"train_runtime": 85.4261,
|
6 |
+
"train_samples": 6174,
|
7 |
+
"train_samples_per_second": 0.936,
|
8 |
+
"train_steps_per_second": 0.117
|
9 |
+
}
|
tokenizer_config.json
CHANGED
@@ -61,15 +61,11 @@
|
|
61 |
"eos_token": "<eos>",
|
62 |
"extra_special_tokens": {},
|
63 |
"legacy": null,
|
64 |
-
"max_length": 1024,
|
65 |
"model_max_length": 1000000000000000019884624838656,
|
66 |
"pad_token": "<pad>",
|
67 |
"sp_model_kwargs": {},
|
68 |
"spaces_between_special_tokens": false,
|
69 |
-
"stride": 0,
|
70 |
"tokenizer_class": "GemmaTokenizer",
|
71 |
-
"truncation_side": "right",
|
72 |
-
"truncation_strategy": "longest_first",
|
73 |
"unk_token": "<unk>",
|
74 |
"use_default_system_prompt": false
|
75 |
}
|
|
|
61 |
"eos_token": "<eos>",
|
62 |
"extra_special_tokens": {},
|
63 |
"legacy": null,
|
|
|
64 |
"model_max_length": 1000000000000000019884624838656,
|
65 |
"pad_token": "<pad>",
|
66 |
"sp_model_kwargs": {},
|
67 |
"spaces_between_special_tokens": false,
|
|
|
68 |
"tokenizer_class": "GemmaTokenizer",
|
|
|
|
|
69 |
"unk_token": "<unk>",
|
70 |
"use_default_system_prompt": false
|
71 |
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"total_flos": 854477494026240.0,
|
4 |
+
"train_loss": 2.395888161659241,
|
5 |
+
"train_runtime": 85.4261,
|
6 |
+
"train_samples": 6174,
|
7 |
+
"train_samples_per_second": 0.936,
|
8 |
+
"train_steps_per_second": 0.117
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 10.0,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 10,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"grad_norm": 3.581932544708252,
|
14 |
+
"learning_rate": 0.0001,
|
15 |
+
"loss": 2.8417,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.0,
|
20 |
+
"eval_loss": 2.8694076538085938,
|
21 |
+
"eval_runtime": 0.5128,
|
22 |
+
"eval_samples_per_second": 1.95,
|
23 |
+
"eval_steps_per_second": 1.95,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 2.0,
|
28 |
+
"grad_norm": 3.5751430988311768,
|
29 |
+
"learning_rate": 0.0002,
|
30 |
+
"loss": 2.8416,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 2.0,
|
35 |
+
"eval_loss": 2.695298671722412,
|
36 |
+
"eval_runtime": 0.5118,
|
37 |
+
"eval_samples_per_second": 1.954,
|
38 |
+
"eval_steps_per_second": 1.954,
|
39 |
+
"step": 2
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 3.0,
|
43 |
+
"grad_norm": 2.5421221256256104,
|
44 |
+
"learning_rate": 0.000175,
|
45 |
+
"loss": 2.6806,
|
46 |
+
"step": 3
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 3.0,
|
50 |
+
"eval_loss": 2.450862169265747,
|
51 |
+
"eval_runtime": 0.5063,
|
52 |
+
"eval_samples_per_second": 1.975,
|
53 |
+
"eval_steps_per_second": 1.975,
|
54 |
+
"step": 3
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 4.0,
|
58 |
+
"grad_norm": 1.2186226844787598,
|
59 |
+
"learning_rate": 0.00015000000000000001,
|
60 |
+
"loss": 2.4573,
|
61 |
+
"step": 4
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 4.0,
|
65 |
+
"eval_loss": 2.3435235023498535,
|
66 |
+
"eval_runtime": 0.5052,
|
67 |
+
"eval_samples_per_second": 1.979,
|
68 |
+
"eval_steps_per_second": 1.979,
|
69 |
+
"step": 4
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 5.0,
|
73 |
+
"grad_norm": 1.7033910751342773,
|
74 |
+
"learning_rate": 0.000125,
|
75 |
+
"loss": 2.3686,
|
76 |
+
"step": 5
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 5.0,
|
80 |
+
"eval_loss": 2.263502597808838,
|
81 |
+
"eval_runtime": 0.5027,
|
82 |
+
"eval_samples_per_second": 1.989,
|
83 |
+
"eval_steps_per_second": 1.989,
|
84 |
+
"step": 5
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 6.0,
|
88 |
+
"grad_norm": 1.8212623596191406,
|
89 |
+
"learning_rate": 0.0001,
|
90 |
+
"loss": 2.2829,
|
91 |
+
"step": 6
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 6.0,
|
95 |
+
"eval_loss": 2.1960206031799316,
|
96 |
+
"eval_runtime": 0.5032,
|
97 |
+
"eval_samples_per_second": 1.987,
|
98 |
+
"eval_steps_per_second": 1.987,
|
99 |
+
"step": 6
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 7.0,
|
103 |
+
"grad_norm": 1.5627810955047607,
|
104 |
+
"learning_rate": 7.500000000000001e-05,
|
105 |
+
"loss": 2.1995,
|
106 |
+
"step": 7
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 7.0,
|
110 |
+
"eval_loss": 2.146212339401245,
|
111 |
+
"eval_runtime": 0.5043,
|
112 |
+
"eval_samples_per_second": 1.983,
|
113 |
+
"eval_steps_per_second": 1.983,
|
114 |
+
"step": 7
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 8.0,
|
118 |
+
"grad_norm": 1.2493813037872314,
|
119 |
+
"learning_rate": 5e-05,
|
120 |
+
"loss": 2.1334,
|
121 |
+
"step": 8
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 8.0,
|
125 |
+
"eval_loss": 2.1154565811157227,
|
126 |
+
"eval_runtime": 0.5079,
|
127 |
+
"eval_samples_per_second": 1.969,
|
128 |
+
"eval_steps_per_second": 1.969,
|
129 |
+
"step": 8
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 9.0,
|
133 |
+
"grad_norm": 1.068291187286377,
|
134 |
+
"learning_rate": 2.5e-05,
|
135 |
+
"loss": 2.0905,
|
136 |
+
"step": 9
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 9.0,
|
140 |
+
"eval_loss": 2.0988733768463135,
|
141 |
+
"eval_runtime": 0.5081,
|
142 |
+
"eval_samples_per_second": 1.968,
|
143 |
+
"eval_steps_per_second": 1.968,
|
144 |
+
"step": 9
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 10.0,
|
148 |
+
"grad_norm": 1.0751439332962036,
|
149 |
+
"learning_rate": 0.0,
|
150 |
+
"loss": 2.0628,
|
151 |
+
"step": 10
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 10.0,
|
155 |
+
"eval_loss": 2.0916833877563477,
|
156 |
+
"eval_runtime": 0.5125,
|
157 |
+
"eval_samples_per_second": 1.951,
|
158 |
+
"eval_steps_per_second": 1.951,
|
159 |
+
"step": 10
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 10.0,
|
163 |
+
"step": 10,
|
164 |
+
"total_flos": 854477494026240.0,
|
165 |
+
"train_loss": 2.395888161659241,
|
166 |
+
"train_runtime": 85.4261,
|
167 |
+
"train_samples_per_second": 0.936,
|
168 |
+
"train_steps_per_second": 0.117
|
169 |
+
}
|
170 |
+
],
|
171 |
+
"logging_steps": 1,
|
172 |
+
"max_steps": 10,
|
173 |
+
"num_input_tokens_seen": 0,
|
174 |
+
"num_train_epochs": 10,
|
175 |
+
"save_steps": 500,
|
176 |
+
"stateful_callbacks": {
|
177 |
+
"TrainerControl": {
|
178 |
+
"args": {
|
179 |
+
"should_epoch_stop": false,
|
180 |
+
"should_evaluate": false,
|
181 |
+
"should_log": false,
|
182 |
+
"should_save": true,
|
183 |
+
"should_training_stop": true
|
184 |
+
},
|
185 |
+
"attributes": {}
|
186 |
+
}
|
187 |
+
},
|
188 |
+
"total_flos": 854477494026240.0,
|
189 |
+
"train_batch_size": 2,
|
190 |
+
"trial_name": null,
|
191 |
+
"trial_params": null
|
192 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:630d77759ac46171dd0558f612e4e399f4a265d0d4e2d95dba9f52ec5936b894
|
3 |
+
size 5624
|