komus commited on
Commit
513d384
·
verified ·
1 Parent(s): 21907eb
README.md CHANGED
@@ -1,199 +1,56 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ model_name: medquad_finetuned
4
+ tags:
5
+ - generated_from_trainer
6
+ - trl
7
+ - sft
8
+ licence: license
9
  ---
10
 
11
+ # Model Card for medquad_finetuned
12
 
13
+ This model is a fine-tuned version of [None](https://huggingface.co/None).
14
+ It has been trained using [TRL](https://github.com/huggingface/trl).
15
 
16
+ ## Quick start
17
 
18
+ ```python
19
+ from transformers import pipeline
20
 
21
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
22
+ generator = pipeline("text-generation", model="komus/medquad_finetuned", device="cuda")
23
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
24
+ print(output["generated_text"])
25
+ ```
26
 
27
+ ## Training procedure
28
 
 
29
 
 
30
 
31
+ This model was trained with SFT.
 
 
 
 
 
 
32
 
33
+ ### Framework versions
34
 
35
+ - TRL: 0.12.1
36
+ - Transformers: 4.47.0.dev0
37
+ - Pytorch: 2.4.0
38
+ - Datasets: 2.21.0
39
+ - Tokenizers: 0.20.3
40
 
41
+ ## Citations
 
 
42
 
 
43
 
 
44
 
45
+ Cite TRL as:
46
+
47
+ ```bibtex
48
+ @misc{vonwerra2022trl,
49
+ title = {{TRL: Transformer Reinforcement Learning}},
50
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
51
+ year = 2020,
52
+ journal = {GitHub repository},
53
+ publisher = {GitHub},
54
+ howpublished = {\url{https://github.com/huggingface/trl}}
55
+ }
56
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9831afd49c1a3834288858d9908eeacc397387edeb1e1fdc908f01cdfdd34a1b
3
  size 19644664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eefbc60c75eef82bd84155bf83b4cbc42ebe86ca062e3169bb4b11bda454bea
3
  size 19644664
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 854477494026240.0,
4
+ "train_loss": 2.395888161659241,
5
+ "train_runtime": 85.4261,
6
+ "train_samples": 6174,
7
+ "train_samples_per_second": 0.936,
8
+ "train_steps_per_second": 0.117
9
+ }
tokenizer_config.json CHANGED
@@ -61,15 +61,11 @@
61
  "eos_token": "<eos>",
62
  "extra_special_tokens": {},
63
  "legacy": null,
64
- "max_length": 1024,
65
  "model_max_length": 1000000000000000019884624838656,
66
  "pad_token": "<pad>",
67
  "sp_model_kwargs": {},
68
  "spaces_between_special_tokens": false,
69
- "stride": 0,
70
  "tokenizer_class": "GemmaTokenizer",
71
- "truncation_side": "right",
72
- "truncation_strategy": "longest_first",
73
  "unk_token": "<unk>",
74
  "use_default_system_prompt": false
75
  }
 
61
  "eos_token": "<eos>",
62
  "extra_special_tokens": {},
63
  "legacy": null,
 
64
  "model_max_length": 1000000000000000019884624838656,
65
  "pad_token": "<pad>",
66
  "sp_model_kwargs": {},
67
  "spaces_between_special_tokens": false,
 
68
  "tokenizer_class": "GemmaTokenizer",
 
 
69
  "unk_token": "<unk>",
70
  "use_default_system_prompt": false
71
  }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 854477494026240.0,
4
+ "train_loss": 2.395888161659241,
5
+ "train_runtime": 85.4261,
6
+ "train_samples": 6174,
7
+ "train_samples_per_second": 0.936,
8
+ "train_steps_per_second": 0.117
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 10,
6
+ "global_step": 10,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "grad_norm": 3.581932544708252,
14
+ "learning_rate": 0.0001,
15
+ "loss": 2.8417,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "eval_loss": 2.8694076538085938,
21
+ "eval_runtime": 0.5128,
22
+ "eval_samples_per_second": 1.95,
23
+ "eval_steps_per_second": 1.95,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 2.0,
28
+ "grad_norm": 3.5751430988311768,
29
+ "learning_rate": 0.0002,
30
+ "loss": 2.8416,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 2.0,
35
+ "eval_loss": 2.695298671722412,
36
+ "eval_runtime": 0.5118,
37
+ "eval_samples_per_second": 1.954,
38
+ "eval_steps_per_second": 1.954,
39
+ "step": 2
40
+ },
41
+ {
42
+ "epoch": 3.0,
43
+ "grad_norm": 2.5421221256256104,
44
+ "learning_rate": 0.000175,
45
+ "loss": 2.6806,
46
+ "step": 3
47
+ },
48
+ {
49
+ "epoch": 3.0,
50
+ "eval_loss": 2.450862169265747,
51
+ "eval_runtime": 0.5063,
52
+ "eval_samples_per_second": 1.975,
53
+ "eval_steps_per_second": 1.975,
54
+ "step": 3
55
+ },
56
+ {
57
+ "epoch": 4.0,
58
+ "grad_norm": 1.2186226844787598,
59
+ "learning_rate": 0.00015000000000000001,
60
+ "loss": 2.4573,
61
+ "step": 4
62
+ },
63
+ {
64
+ "epoch": 4.0,
65
+ "eval_loss": 2.3435235023498535,
66
+ "eval_runtime": 0.5052,
67
+ "eval_samples_per_second": 1.979,
68
+ "eval_steps_per_second": 1.979,
69
+ "step": 4
70
+ },
71
+ {
72
+ "epoch": 5.0,
73
+ "grad_norm": 1.7033910751342773,
74
+ "learning_rate": 0.000125,
75
+ "loss": 2.3686,
76
+ "step": 5
77
+ },
78
+ {
79
+ "epoch": 5.0,
80
+ "eval_loss": 2.263502597808838,
81
+ "eval_runtime": 0.5027,
82
+ "eval_samples_per_second": 1.989,
83
+ "eval_steps_per_second": 1.989,
84
+ "step": 5
85
+ },
86
+ {
87
+ "epoch": 6.0,
88
+ "grad_norm": 1.8212623596191406,
89
+ "learning_rate": 0.0001,
90
+ "loss": 2.2829,
91
+ "step": 6
92
+ },
93
+ {
94
+ "epoch": 6.0,
95
+ "eval_loss": 2.1960206031799316,
96
+ "eval_runtime": 0.5032,
97
+ "eval_samples_per_second": 1.987,
98
+ "eval_steps_per_second": 1.987,
99
+ "step": 6
100
+ },
101
+ {
102
+ "epoch": 7.0,
103
+ "grad_norm": 1.5627810955047607,
104
+ "learning_rate": 7.500000000000001e-05,
105
+ "loss": 2.1995,
106
+ "step": 7
107
+ },
108
+ {
109
+ "epoch": 7.0,
110
+ "eval_loss": 2.146212339401245,
111
+ "eval_runtime": 0.5043,
112
+ "eval_samples_per_second": 1.983,
113
+ "eval_steps_per_second": 1.983,
114
+ "step": 7
115
+ },
116
+ {
117
+ "epoch": 8.0,
118
+ "grad_norm": 1.2493813037872314,
119
+ "learning_rate": 5e-05,
120
+ "loss": 2.1334,
121
+ "step": 8
122
+ },
123
+ {
124
+ "epoch": 8.0,
125
+ "eval_loss": 2.1154565811157227,
126
+ "eval_runtime": 0.5079,
127
+ "eval_samples_per_second": 1.969,
128
+ "eval_steps_per_second": 1.969,
129
+ "step": 8
130
+ },
131
+ {
132
+ "epoch": 9.0,
133
+ "grad_norm": 1.068291187286377,
134
+ "learning_rate": 2.5e-05,
135
+ "loss": 2.0905,
136
+ "step": 9
137
+ },
138
+ {
139
+ "epoch": 9.0,
140
+ "eval_loss": 2.0988733768463135,
141
+ "eval_runtime": 0.5081,
142
+ "eval_samples_per_second": 1.968,
143
+ "eval_steps_per_second": 1.968,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 10.0,
148
+ "grad_norm": 1.0751439332962036,
149
+ "learning_rate": 0.0,
150
+ "loss": 2.0628,
151
+ "step": 10
152
+ },
153
+ {
154
+ "epoch": 10.0,
155
+ "eval_loss": 2.0916833877563477,
156
+ "eval_runtime": 0.5125,
157
+ "eval_samples_per_second": 1.951,
158
+ "eval_steps_per_second": 1.951,
159
+ "step": 10
160
+ },
161
+ {
162
+ "epoch": 10.0,
163
+ "step": 10,
164
+ "total_flos": 854477494026240.0,
165
+ "train_loss": 2.395888161659241,
166
+ "train_runtime": 85.4261,
167
+ "train_samples_per_second": 0.936,
168
+ "train_steps_per_second": 0.117
169
+ }
170
+ ],
171
+ "logging_steps": 1,
172
+ "max_steps": 10,
173
+ "num_input_tokens_seen": 0,
174
+ "num_train_epochs": 10,
175
+ "save_steps": 500,
176
+ "stateful_callbacks": {
177
+ "TrainerControl": {
178
+ "args": {
179
+ "should_epoch_stop": false,
180
+ "should_evaluate": false,
181
+ "should_log": false,
182
+ "should_save": true,
183
+ "should_training_stop": true
184
+ },
185
+ "attributes": {}
186
+ }
187
+ },
188
+ "total_flos": 854477494026240.0,
189
+ "train_batch_size": 2,
190
+ "trial_name": null,
191
+ "trial_params": null
192
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:630d77759ac46171dd0558f612e4e399f4a265d0d4e2d95dba9f52ec5936b894
3
+ size 5624