update
Browse files- README.md +37 -0
- config.json +1 -0
- hfppo_w1.zip +3 -0
- hfppo_w1/_stable_baselines3_version +1 -0
- hfppo_w1/data +94 -0
- hfppo_w1/policy.optimizer.pth +3 -0
- hfppo_w1/policy.pth +3 -0
- hfppo_w1/pytorch_variables.pth +3 -0
- hfppo_w1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 251.65 +/- 21.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32acdf2040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32acdf20d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32acdf2160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32acdf21f0>", "_build": "<function ActorCriticPolicy._build at 0x7f32acdf2280>", "forward": "<function ActorCriticPolicy.forward at 0x7f32acdf2310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32acdf23a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32acdf2430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32acdf24c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32acdf2550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32acdf25e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f32acdee510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672934579328244752, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrC/z1cvRQ7RFcKvhKcLL6+hUy8QMRVPAAAAAAAAAAATSQ/vbjMlT+Id0K+Qbwrv0/hk73mdse9AAAAAAAAAAAanjK+bpmZvIUy7Trmkjs5JBQIPkjTILoAAIA/AACAP8ZBXD7pk0G8OqoVO9dG+bi6Yqq9qwwyugAAgD8AAIA/pjs3vmwjibvX4L6yA9xiMkwz6TyG1EszAACAPwAAgD+60F++OCrTPol3Oj03Osy+ZkrUveNbUj0AAAAAAAAAAGZlEj1kySE/G/zpvIMt976jSBO86tJ6uwAAAAAAAAAAAFxePYYqRT9ENoM9lPUCv9mTSz0kVwi9AAAAAAAAAADTDSG+vZUcPF1u2z2G9Tm8UPyxvaLTLz0AAIA/AACAPxpQLD7DQEm8qRqwOi4Yb7gBNam9yie3uQAAgD8AAIA/JtXyvXsxQD+O3wq+t24Jv8IOAb7SFB68AAAAAAAAAACakGk+7EToPJUYc7o5xzC5rol/PvsEqzkAAIA/AACAP+Yanj0UvIe62yDstG+pdq/afqk6auFJNAAAgD8AAIA/gOCgPSlsOLp6W3I90vtsNqyWpzvKH2U1AAAAAAAAgD+AKcq9g9xxvO7ouD10mH+9STvNvQszUL4AAIA/AACAP52Rrj7OlGI/D06BPru1Bb93O6E+Hx4rvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWFTE6WRLcECUhpRSlIwBbJRL9YwBdJRHQJngcEcKgI11fZQoaAZoCWgPQwgdAdwsXh9xQJSGlFKUaBVNHgFoFkdAmeCUv9LpR3V9lChoBmgJaA9DCKfn3VhQDHNAlIaUUpRoFUvtaBZHQJnjsvEjxCp1fZQoaAZoCWgPQwgYmBWKdO1uQJSGlFKUaBVL+2gWR0CZ47O/+Kj0dX2UKGgGaAloD0MIAOMZNPRGXkCUhpRSlGgVTegDaBZHQJnkAImgJ1J1fZQoaAZoCWgPQwgS9YJPMxVwQJSGlFKUaBVL1GgWR0CZ5EQjD8+BdX2UKGgGaAloD0MIH/XXK2xPcUCUhpRSlGgVS/BoFkdAmeYrlNlAeXV9lChoBmgJaA9DCP3c0JQdwW9AlIaUUpRoFUveaBZHQJnmT0nPVut1fZQoaAZoCWgPQwiLNzKP/LZwQJSGlFKUaBVL5mgWR0CZ5lbWEsasdX2UKGgGaAloD0MIMlab/9eIY0CUhpRSlGgVTegDaBZHQJnmm0TlDF91fZQoaAZoCWgPQwi/CvDdpjVxQJSGlFKUaBVL92gWR0CZ5u3G4qgAdX2UKGgGaAloD0MI100prxWzcUCUhpRSlGgVS9FoFkdAmecLUkOZs3V9lChoBmgJaA9DCDKQZ5dvB3JAlIaUUpRoFUvOaBZHQJnnHdSEUTN1fZQoaAZoCWgPQwhgVijSfYxwQJSGlFKUaBVL0mgWR0CZ5xq8UVSGdX2UKGgGaAloD0MIkIKnkKvPb0CUhpRSlGgVTR4BaBZHQJnozhxYJVt1fZQoaAZoCWgPQwhdN6W8FgNxQJSGlFKUaBVLxmgWR0CZ6Vd/J/5MdX2UKGgGaAloD0MInfNTHAdTcECUhpRSlGgVS8xoFkdAmenkLlV94XV9lChoBmgJaA9DCCLjUSqhpXBAlIaUUpRoFUvqaBZHQJnq7uy/sVt1fZQoaAZoCWgPQwhmaafmsppwQJSGlFKUaBVNCQFoFkdAmetGjfvWpnV9lChoBmgJaA9DCCz0wTI2nHNAlIaUUpRoFUvdaBZHQJntFmnO0LN1fZQoaAZoCWgPQwg5Jov7j3JwQJSGlFKUaBVL6mgWR0CZ7XfwqiGndX2UKGgGaAloD0MI12t6UFDyckCUhpRSlGgVS+FoFkdAme1/4Irvs3V9lChoBmgJaA9DCEFl/PsMMXJAlIaUUpRoFUvZaBZHQJnt2rjo6jp1fZQoaAZoCWgPQwj52ch1U7hgQJSGlFKUaBVN6ANoFkdAme3f6TGHYnV9lChoBmgJaA9DCF+0xwtplHBAlIaUUpRoFUvqaBZHQJnuR22XsxB1fZQoaAZoCWgPQwgSEmkb/5FxQJSGlFKUaBVL72gWR0CZ7k0xdpqRdX2UKGgGaAloD0MIi/7QzBMWb0CUhpRSlGgVTRYBaBZHQJnunTz/ZNB1fZQoaAZoCWgPQwiTcvc5vkFuQJSGlFKUaBVNCQFoFkdAme8p2U0N0HV9lChoBmgJaA9DCI1D/S6sxHBAlIaUUpRoFUvSaBZHQJnvcU1yeZp1fZQoaAZoCWgPQwgUtMnhE+pxQJSGlFKUaBVL0WgWR0CZ8YnmaH9FdX2UKGgGaAloD0MIq7NaYA83ckCUhpRSlGgVTTsBaBZHQJnyqqWC2+h1fZQoaAZoCWgPQwi6pGq7ic9wQJSGlFKUaBVL5GgWR0CZ82CRwIdEdX2UKGgGaAloD0MI24XmOo00cECUhpRSlGgVS95oFkdAmfOQZTAFgXV9lChoBmgJaA9DCPF+3H65lnFAlIaUUpRoFUvOaBZHQJn0RzKcNH91fZQoaAZoCWgPQwg3N6YnrC5tQJSGlFKUaBVL32gWR0CZ9G0UXYUWdX2UKGgGaAloD0MIbVUS2QdeckCUhpRSlGgVS/JoFkdAmfSNnscABHV9lChoBmgJaA9DCAINNnWeknFAlIaUUpRoFUvzaBZHQJn1CMxXXAd1fZQoaAZoCWgPQwh24nK8wmRyQJSGlFKUaBVNWgFoFkdAmfU69bor4HV9lChoBmgJaA9DCDUk7rG0mnFAlIaUUpRoFUveaBZHQJn1ZHFxXGR1fZQoaAZoCWgPQwhUyJV6FqZtQJSGlFKUaBVLv2gWR0CZ9xeMhougdX2UKGgGaAloD0MIeZCeIoc/ZUCUhpRSlGgVTegDaBZHQJn4ItK7I1d1fZQoaAZoCWgPQwhGX0GacddxQJSGlFKUaBVLvmgWR0CZ+EMbm2b5dX2UKGgGaAloD0MIt3u5Tw78YkCUhpRSlGgVTegDaBZHQJn436vaDf51fZQoaAZoCWgPQwiY2lIHecUkwJSGlFKUaBVLr2gWR0CZ+ceEZiuudX2UKGgGaAloD0MIM05DVKFEcUCUhpRSlGgVTZMBaBZHQJn7ThzeXRh1fZQoaAZoCWgPQwiDa+7of0xyQJSGlFKUaBVL8GgWR0CZ+6OhTOxCdX2UKGgGaAloD0MIDtdqD/uncECUhpRSlGgVTQkBaBZHQJn7r4mCyyF1fZQoaAZoCWgPQwjOwwlMp7pwQJSGlFKUaBVL8GgWR0CZ+8zyz5XVdX2UKGgGaAloD0MIqbwd4fQjcUCUhpRSlGgVS+JoFkdAmfwBb0OEunV9lChoBmgJaA9DCFMJT+h1NnJAlIaUUpRoFUvcaBZHQJn8NDArQPZ1fZQoaAZoCWgPQwgJqdvZV9pxQJSGlFKUaBVNSgFoFkdAmf1kCzTnaHV9lChoBmgJaA9DCFGIgEMoJm9AlIaUUpRoFUvXaBZHQJn+30rbxmV1fZQoaAZoCWgPQwgt6SgHs6hvQJSGlFKUaBVL8WgWR0CZ/8W/JvHcdX2UKGgGaAloD0MId4L91zlMcUCUhpRSlGgVTRoBaBZHQJn/3OE/Spl1fZQoaAZoCWgPQwhCBYcXRBhvQJSGlFKUaBVL5GgWR0CZ//VUdaMadX2UKGgGaAloD0MIz/QSY1k0cECUhpRSlGgVS9doFkdAmgBlXaJyhnV9lChoBmgJaA9DCGq/tROlB25AlIaUUpRoFUvVaBZHQJoB+n2qT8p1fZQoaAZoCWgPQwgB+KdUyUBxQJSGlFKUaBVL1GgWR0CaAhoSteUqdX2UKGgGaAloD0MIMnIW9jQkbUCUhpRSlGgVS+FoFkdAmgJhgJC0GHV9lChoBmgJaA9DCO0pOSe2C3JAlIaUUpRoFUvvaBZHQJoCc8yN4qx1fZQoaAZoCWgPQwgqApzexYdyQJSGlFKUaBVNAwFoFkdAmgPqqwQlKXV9lChoBmgJaA9DCOaRPxj4oHFAlIaUUpRoFUvYaBZHQJoFuV1Oj7B1fZQoaAZoCWgPQwioVfSHJnJxQJSGlFKUaBVL7WgWR0CaB8XWOIZZdX2UKGgGaAloD0MIyXTo9HwqcUCUhpRSlGgVS/5oFkdAmghRaLXL/3V9lChoBmgJaA9DCBqmttTBamJAlIaUUpRoFU3oA2gWR0CaCL73PAwgdX2UKGgGaAloD0MIbF9AL9zOb0CUhpRSlGgVTR0BaBZHQJoJUSTQmeF1fZQoaAZoCWgPQwg+QPflzF5xQJSGlFKUaBVL0mgWR0CaCXuc+aBqdX2UKGgGaAloD0MIotReRNtKcECUhpRSlGgVS85oFkdAmgnBbfP5YnV9lChoBmgJaA9DCFOzB1qBVXBAlIaUUpRoFU0lAWgWR0CaClgM+eOGdX2UKGgGaAloD0MIrweT4iNWcECUhpRSlGgVS/FoFkdAmgrNBv73wnV9lChoBmgJaA9DCNF0djK4V2NAlIaUUpRoFU3oA2gWR0CaDF+wC8vmdX2UKGgGaAloD0MIMXpuoav4Y0CUhpRSlGgVTegDaBZHQJoMxUjs2Nx1fZQoaAZoCWgPQwgtQUZAxdpyQJSGlFKUaBVN2QFoFkdAmgzvrGBFu3V9lChoBmgJaA9DCCTW4lPA4HFAlIaUUpRoFUvtaBZHQJoNsfr8iwB1fZQoaAZoCWgPQwgLCRhd3mVwQJSGlFKUaBVL2WgWR0CaDs3cpLEldX2UKGgGaAloD0MI58WJrzYYcUCUhpRSlGgVS7doFkdAmg9rZ8KG+XV9lChoBmgJaA9DCDXPEfmue29AlIaUUpRoFUvhaBZHQJoPdSeiBXl1fZQoaAZoCWgPQwhbQGg9/MVxQJSGlFKUaBVNgwJoFkdAmhDEth/iHnV9lChoBmgJaA9DCKH18GWin3FAlIaUUpRoFUvsaBZHQJoQ3Z00WM11fZQoaAZoCWgPQwhhVFInoOlwQJSGlFKUaBVL8WgWR0CaEeB1cMVldX2UKGgGaAloD0MIu7VMhuMTcECUhpRSlGgVTREBaBZHQJoR8PjGT9t1fZQoaAZoCWgPQwjdmnRbYoZxQJSGlFKUaBVL6WgWR0CaEhncclw+dX2UKGgGaAloD0MINIP4wA4MckCUhpRSlGgVTTgBaBZHQJoSqreZXuF1fZQoaAZoCWgPQwiyTL9EPBJwQJSGlFKUaBVN1gFoFkdAmhNLJGOMl3V9lChoBmgJaA9DCEM9fQR+DW5AlIaUUpRoFUvcaBZHQJoTht52Qnx1fZQoaAZoCWgPQwj4+8VsSZxwQJSGlFKUaBVL7mgWR0CaFCOQQtjDdX2UKGgGaAloD0MI5BOy87YocUCUhpRSlGgVS+BoFkdAmhSDYVZcLXV9lChoBmgJaA9DCJusUQ/R2mJAlIaUUpRoFU3oA2gWR0CaFLSCvovBdX2UKGgGaAloD0MIpHGo3wX1cUCUhpRSlGgVS8doFkdAmhTRmXgLqnV9lChoBmgJaA9DCP1qDhBMHG5AlIaUUpRoFUvWaBZHQJoVsazeGfx1fZQoaAZoCWgPQwjJ6ev5mq9EQJSGlFKUaBVLomgWR0CaFlTyauwHdX2UKGgGaAloD0MIHvmDgefGSUCUhpRSlGgVS6xoFkdAmhaPWhAWznV9lChoBmgJaA9DCHIW9rTDkU5AlIaUUpRoFUuuaBZHQJoW0cENe+p1fZQoaAZoCWgPQwh3acNh6eZtQJSGlFKUaBVL3mgWR0CaFxmfoRqXdX2UKGgGaAloD0MIHmyx2yd4cECUhpRSlGgVS+FoFkdAmhlq8tf5UXV9lChoBmgJaA9DCJmbb0T3ZnFAlIaUUpRoFUvwaBZHQJoaPhR64Uh1fZQoaAZoCWgPQwidgvxsJDlwQJSGlFKUaBVL3WgWR0CaGmCXyAhCdX2UKGgGaAloD0MIeqnYmBcvcUCUhpRSlGgVTRMBaBZHQJoaZv4ubqh1fZQoaAZoCWgPQwiTN8DM909zQJSGlFKUaBVL3WgWR0CaGsG4I8hcdX2UKGgGaAloD0MIZtzUQDO/cUCUhpRSlGgVS+xoFkdAmhtjZHuqm3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
hfppo_w1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85f322a4086f0b112c49cc9e166bd86fd247812efe5ba909894a28a7c8980bdd
|
3 |
+
size 147125
|
hfppo_w1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
hfppo_w1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f32acdf2040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32acdf20d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32acdf2160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32acdf21f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f32acdf2280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f32acdf2310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32acdf23a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f32acdf2430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32acdf24c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32acdf2550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32acdf25e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f32acdee510>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672934579328244752,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrC/z1cvRQ7RFcKvhKcLL6+hUy8QMRVPAAAAAAAAAAATSQ/vbjMlT+Id0K+Qbwrv0/hk73mdse9AAAAAAAAAAAanjK+bpmZvIUy7Trmkjs5JBQIPkjTILoAAIA/AACAP8ZBXD7pk0G8OqoVO9dG+bi6Yqq9qwwyugAAgD8AAIA/pjs3vmwjibvX4L6yA9xiMkwz6TyG1EszAACAPwAAgD+60F++OCrTPol3Oj03Osy+ZkrUveNbUj0AAAAAAAAAAGZlEj1kySE/G/zpvIMt976jSBO86tJ6uwAAAAAAAAAAAFxePYYqRT9ENoM9lPUCv9mTSz0kVwi9AAAAAAAAAADTDSG+vZUcPF1u2z2G9Tm8UPyxvaLTLz0AAIA/AACAPxpQLD7DQEm8qRqwOi4Yb7gBNam9yie3uQAAgD8AAIA/JtXyvXsxQD+O3wq+t24Jv8IOAb7SFB68AAAAAAAAAACakGk+7EToPJUYc7o5xzC5rol/PvsEqzkAAIA/AACAP+Yanj0UvIe62yDstG+pdq/afqk6auFJNAAAgD8AAIA/gOCgPSlsOLp6W3I90vtsNqyWpzvKH2U1AAAAAAAAgD+AKcq9g9xxvO7ouD10mH+9STvNvQszUL4AAIA/AACAP52Rrj7OlGI/D06BPru1Bb93O6E+Hx4rvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWFTE6WRLcECUhpRSlIwBbJRL9YwBdJRHQJngcEcKgI11fZQoaAZoCWgPQwgdAdwsXh9xQJSGlFKUaBVNHgFoFkdAmeCUv9LpR3V9lChoBmgJaA9DCKfn3VhQDHNAlIaUUpRoFUvtaBZHQJnjsvEjxCp1fZQoaAZoCWgPQwgYmBWKdO1uQJSGlFKUaBVL+2gWR0CZ47O/+Kj0dX2UKGgGaAloD0MIAOMZNPRGXkCUhpRSlGgVTegDaBZHQJnkAImgJ1J1fZQoaAZoCWgPQwgS9YJPMxVwQJSGlFKUaBVL1GgWR0CZ5EQjD8+BdX2UKGgGaAloD0MIH/XXK2xPcUCUhpRSlGgVS/BoFkdAmeYrlNlAeXV9lChoBmgJaA9DCP3c0JQdwW9AlIaUUpRoFUveaBZHQJnmT0nPVut1fZQoaAZoCWgPQwiLNzKP/LZwQJSGlFKUaBVL5mgWR0CZ5lbWEsasdX2UKGgGaAloD0MIMlab/9eIY0CUhpRSlGgVTegDaBZHQJnmm0TlDF91fZQoaAZoCWgPQwi/CvDdpjVxQJSGlFKUaBVL92gWR0CZ5u3G4qgAdX2UKGgGaAloD0MI100prxWzcUCUhpRSlGgVS9FoFkdAmecLUkOZs3V9lChoBmgJaA9DCDKQZ5dvB3JAlIaUUpRoFUvOaBZHQJnnHdSEUTN1fZQoaAZoCWgPQwhgVijSfYxwQJSGlFKUaBVL0mgWR0CZ5xq8UVSGdX2UKGgGaAloD0MIkIKnkKvPb0CUhpRSlGgVTR4BaBZHQJnozhxYJVt1fZQoaAZoCWgPQwhdN6W8FgNxQJSGlFKUaBVLxmgWR0CZ6Vd/J/5MdX2UKGgGaAloD0MInfNTHAdTcECUhpRSlGgVS8xoFkdAmenkLlV94XV9lChoBmgJaA9DCCLjUSqhpXBAlIaUUpRoFUvqaBZHQJnq7uy/sVt1fZQoaAZoCWgPQwhmaafmsppwQJSGlFKUaBVNCQFoFkdAmetGjfvWpnV9lChoBmgJaA9DCCz0wTI2nHNAlIaUUpRoFUvdaBZHQJntFmnO0LN1fZQoaAZoCWgPQwg5Jov7j3JwQJSGlFKUaBVL6mgWR0CZ7XfwqiGndX2UKGgGaAloD0MI12t6UFDyckCUhpRSlGgVS+FoFkdAme1/4Irvs3V9lChoBmgJaA9DCEFl/PsMMXJAlIaUUpRoFUvZaBZHQJnt2rjo6jp1fZQoaAZoCWgPQwj52ch1U7hgQJSGlFKUaBVN6ANoFkdAme3f6TGHYnV9lChoBmgJaA9DCF+0xwtplHBAlIaUUpRoFUvqaBZHQJnuR22XsxB1fZQoaAZoCWgPQwgSEmkb/5FxQJSGlFKUaBVL72gWR0CZ7k0xdpqRdX2UKGgGaAloD0MIi/7QzBMWb0CUhpRSlGgVTRYBaBZHQJnunTz/ZNB1fZQoaAZoCWgPQwiTcvc5vkFuQJSGlFKUaBVNCQFoFkdAme8p2U0N0HV9lChoBmgJaA9DCI1D/S6sxHBAlIaUUpRoFUvSaBZHQJnvcU1yeZp1fZQoaAZoCWgPQwgUtMnhE+pxQJSGlFKUaBVL0WgWR0CZ8YnmaH9FdX2UKGgGaAloD0MIq7NaYA83ckCUhpRSlGgVTTsBaBZHQJnyqqWC2+h1fZQoaAZoCWgPQwi6pGq7ic9wQJSGlFKUaBVL5GgWR0CZ82CRwIdEdX2UKGgGaAloD0MI24XmOo00cECUhpRSlGgVS95oFkdAmfOQZTAFgXV9lChoBmgJaA9DCPF+3H65lnFAlIaUUpRoFUvOaBZHQJn0RzKcNH91fZQoaAZoCWgPQwg3N6YnrC5tQJSGlFKUaBVL32gWR0CZ9G0UXYUWdX2UKGgGaAloD0MIbVUS2QdeckCUhpRSlGgVS/JoFkdAmfSNnscABHV9lChoBmgJaA9DCAINNnWeknFAlIaUUpRoFUvzaBZHQJn1CMxXXAd1fZQoaAZoCWgPQwh24nK8wmRyQJSGlFKUaBVNWgFoFkdAmfU69bor4HV9lChoBmgJaA9DCDUk7rG0mnFAlIaUUpRoFUveaBZHQJn1ZHFxXGR1fZQoaAZoCWgPQwhUyJV6FqZtQJSGlFKUaBVLv2gWR0CZ9xeMhougdX2UKGgGaAloD0MIeZCeIoc/ZUCUhpRSlGgVTegDaBZHQJn4ItK7I1d1fZQoaAZoCWgPQwhGX0GacddxQJSGlFKUaBVLvmgWR0CZ+EMbm2b5dX2UKGgGaAloD0MIt3u5Tw78YkCUhpRSlGgVTegDaBZHQJn436vaDf51fZQoaAZoCWgPQwiY2lIHecUkwJSGlFKUaBVLr2gWR0CZ+ceEZiuudX2UKGgGaAloD0MIM05DVKFEcUCUhpRSlGgVTZMBaBZHQJn7ThzeXRh1fZQoaAZoCWgPQwiDa+7of0xyQJSGlFKUaBVL8GgWR0CZ+6OhTOxCdX2UKGgGaAloD0MIDtdqD/uncECUhpRSlGgVTQkBaBZHQJn7r4mCyyF1fZQoaAZoCWgPQwjOwwlMp7pwQJSGlFKUaBVL8GgWR0CZ+8zyz5XVdX2UKGgGaAloD0MIqbwd4fQjcUCUhpRSlGgVS+JoFkdAmfwBb0OEunV9lChoBmgJaA9DCFMJT+h1NnJAlIaUUpRoFUvcaBZHQJn8NDArQPZ1fZQoaAZoCWgPQwgJqdvZV9pxQJSGlFKUaBVNSgFoFkdAmf1kCzTnaHV9lChoBmgJaA9DCFGIgEMoJm9AlIaUUpRoFUvXaBZHQJn+30rbxmV1fZQoaAZoCWgPQwgt6SgHs6hvQJSGlFKUaBVL8WgWR0CZ/8W/JvHcdX2UKGgGaAloD0MId4L91zlMcUCUhpRSlGgVTRoBaBZHQJn/3OE/Spl1fZQoaAZoCWgPQwhCBYcXRBhvQJSGlFKUaBVL5GgWR0CZ//VUdaMadX2UKGgGaAloD0MIz/QSY1k0cECUhpRSlGgVS9doFkdAmgBlXaJyhnV9lChoBmgJaA9DCGq/tROlB25AlIaUUpRoFUvVaBZHQJoB+n2qT8p1fZQoaAZoCWgPQwgB+KdUyUBxQJSGlFKUaBVL1GgWR0CaAhoSteUqdX2UKGgGaAloD0MIMnIW9jQkbUCUhpRSlGgVS+FoFkdAmgJhgJC0GHV9lChoBmgJaA9DCO0pOSe2C3JAlIaUUpRoFUvvaBZHQJoCc8yN4qx1fZQoaAZoCWgPQwgqApzexYdyQJSGlFKUaBVNAwFoFkdAmgPqqwQlKXV9lChoBmgJaA9DCOaRPxj4oHFAlIaUUpRoFUvYaBZHQJoFuV1Oj7B1fZQoaAZoCWgPQwioVfSHJnJxQJSGlFKUaBVL7WgWR0CaB8XWOIZZdX2UKGgGaAloD0MIyXTo9HwqcUCUhpRSlGgVS/5oFkdAmghRaLXL/3V9lChoBmgJaA9DCBqmttTBamJAlIaUUpRoFU3oA2gWR0CaCL73PAwgdX2UKGgGaAloD0MIbF9AL9zOb0CUhpRSlGgVTR0BaBZHQJoJUSTQmeF1fZQoaAZoCWgPQwg+QPflzF5xQJSGlFKUaBVL0mgWR0CaCXuc+aBqdX2UKGgGaAloD0MIotReRNtKcECUhpRSlGgVS85oFkdAmgnBbfP5YnV9lChoBmgJaA9DCFOzB1qBVXBAlIaUUpRoFU0lAWgWR0CaClgM+eOGdX2UKGgGaAloD0MIrweT4iNWcECUhpRSlGgVS/FoFkdAmgrNBv73wnV9lChoBmgJaA9DCNF0djK4V2NAlIaUUpRoFU3oA2gWR0CaDF+wC8vmdX2UKGgGaAloD0MIMXpuoav4Y0CUhpRSlGgVTegDaBZHQJoMxUjs2Nx1fZQoaAZoCWgPQwgtQUZAxdpyQJSGlFKUaBVN2QFoFkdAmgzvrGBFu3V9lChoBmgJaA9DCCTW4lPA4HFAlIaUUpRoFUvtaBZHQJoNsfr8iwB1fZQoaAZoCWgPQwgLCRhd3mVwQJSGlFKUaBVL2WgWR0CaDs3cpLEldX2UKGgGaAloD0MI58WJrzYYcUCUhpRSlGgVS7doFkdAmg9rZ8KG+XV9lChoBmgJaA9DCDXPEfmue29AlIaUUpRoFUvhaBZHQJoPdSeiBXl1fZQoaAZoCWgPQwhbQGg9/MVxQJSGlFKUaBVNgwJoFkdAmhDEth/iHnV9lChoBmgJaA9DCKH18GWin3FAlIaUUpRoFUvsaBZHQJoQ3Z00WM11fZQoaAZoCWgPQwhhVFInoOlwQJSGlFKUaBVL8WgWR0CaEeB1cMVldX2UKGgGaAloD0MIu7VMhuMTcECUhpRSlGgVTREBaBZHQJoR8PjGT9t1fZQoaAZoCWgPQwjdmnRbYoZxQJSGlFKUaBVL6WgWR0CaEhncclw+dX2UKGgGaAloD0MINIP4wA4MckCUhpRSlGgVTTgBaBZHQJoSqreZXuF1fZQoaAZoCWgPQwiyTL9EPBJwQJSGlFKUaBVN1gFoFkdAmhNLJGOMl3V9lChoBmgJaA9DCEM9fQR+DW5AlIaUUpRoFUvcaBZHQJoTht52Qnx1fZQoaAZoCWgPQwj4+8VsSZxwQJSGlFKUaBVL7mgWR0CaFCOQQtjDdX2UKGgGaAloD0MI5BOy87YocUCUhpRSlGgVS+BoFkdAmhSDYVZcLXV9lChoBmgJaA9DCJusUQ/R2mJAlIaUUpRoFU3oA2gWR0CaFLSCvovBdX2UKGgGaAloD0MIpHGo3wX1cUCUhpRSlGgVS8doFkdAmhTRmXgLqnV9lChoBmgJaA9DCP1qDhBMHG5AlIaUUpRoFUvWaBZHQJoVsazeGfx1fZQoaAZoCWgPQwjJ6ev5mq9EQJSGlFKUaBVLomgWR0CaFlTyauwHdX2UKGgGaAloD0MIHvmDgefGSUCUhpRSlGgVS6xoFkdAmhaPWhAWznV9lChoBmgJaA9DCHIW9rTDkU5AlIaUUpRoFUuuaBZHQJoW0cENe+p1fZQoaAZoCWgPQwh3acNh6eZtQJSGlFKUaBVL3mgWR0CaFxmfoRqXdX2UKGgGaAloD0MIHmyx2yd4cECUhpRSlGgVS+FoFkdAmhlq8tf5UXV9lChoBmgJaA9DCJmbb0T3ZnFAlIaUUpRoFUvwaBZHQJoaPhR64Uh1fZQoaAZoCWgPQwidgvxsJDlwQJSGlFKUaBVL3WgWR0CaGmCXyAhCdX2UKGgGaAloD0MIeqnYmBcvcUCUhpRSlGgVTRMBaBZHQJoaZv4ubqh1fZQoaAZoCWgPQwiTN8DM909zQJSGlFKUaBVL3WgWR0CaGsG4I8hcdX2UKGgGaAloD0MIZtzUQDO/cUCUhpRSlGgVS+xoFkdAmhtjZHuqm3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
hfppo_w1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9babf06c8bbdb9683ed1804d3f9183ec9277188918cbf658a1440ced2152debe
|
3 |
+
size 87929
|
hfppo_w1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bb5da08f4ee03384be6b52baeed866da7f020e72930ee10de82f69e123c1812
|
3 |
+
size 43201
|
hfppo_w1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
hfppo_w1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (195 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 251.65382651057388, "std_reward": 21.549742772607996, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-05T16:27:22.682123"}
|