Francesco Lattari commited on
Commit
d1e6b43
·
1 Parent(s): 81de2ec

cloned model

Browse files
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail++
3
+ base_model: runwayml/stable-diffusion-v1-5
4
+ tags:
5
+ - stable-diffusion-xl
6
+ - stable-diffusion-xl-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ inference: false
10
+ ---
11
+
12
+ # SDXL-controlnet: Canny
13
+
14
+ These are controlnet weights trained on [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) with canny conditioning. You can find some example images in the following.
15
+
16
+ prompt: a couple watching a romantic sunset, 4k photo
17
+ ![images_0)](./out_couple.png)
18
+
19
+ prompt: ultrarealistic shot of a furry blue bird
20
+ ![images_1)](./out_bird.png)
21
+
22
+ prompt: a woman, close up, detailed, beautiful, street photography, photorealistic, detailed, Kodak ektar 100, natural, candid shot
23
+ ![images_2)](./out_women.png)
24
+
25
+ prompt: Cinematic, neoclassical table in the living room, cinematic, contour, lighting, highly detailed, winter, golden hour
26
+ ![images_3)](./out_room.png)
27
+
28
+ prompt: a tornado hitting grass field, 1980's film grain. overcast, muted colors.
29
+ ![images_0)](./out_tornado.png)
30
+
31
+ ## Usage
32
+
33
+ Make sure to first install the libraries:
34
+
35
+ ```bash
36
+ pip install accelerate transformers safetensors opencv-python diffusers
37
+ ```
38
+
39
+ And then we're ready to go:
40
+
41
+ ```python
42
+ from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
43
+ from diffusers.utils import load_image
44
+ from PIL import Image
45
+ import torch
46
+ import numpy as np
47
+ import cv2
48
+
49
+ prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
50
+ negative_prompt = 'low quality, bad quality, sketches'
51
+
52
+ image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
53
+
54
+ controlnet_conditioning_scale = 0.5 # recommended for good generalization
55
+
56
+ controlnet = ControlNetModel.from_pretrained(
57
+ "diffusers/controlnet-canny-sdxl-1.0",
58
+ torch_dtype=torch.float16
59
+ )
60
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
61
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
62
+ "stabilityai/stable-diffusion-xl-base-1.0",
63
+ controlnet=controlnet,
64
+ vae=vae,
65
+ torch_dtype=torch.float16,
66
+ )
67
+ pipe.enable_model_cpu_offload()
68
+
69
+ image = np.array(image)
70
+ image = cv2.Canny(image, 100, 200)
71
+ image = image[:, :, None]
72
+ image = np.concatenate([image, image, image], axis=2)
73
+ image = Image.fromarray(image)
74
+
75
+ images = pipe(
76
+ prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,
77
+ ).images
78
+
79
+ images[0].save(f"hug_lab.png")
80
+ ```
81
+
82
+ ![images_10)](./out_hug_lab_7.png)
83
+
84
+ To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
85
+
86
+ ### Training
87
+
88
+ Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
89
+
90
+ #### Training data
91
+ This checkpoint was first trained for 20,000 steps on laion 6a resized to a max minimum dimension of 384.
92
+ It was then further trained for 20,000 steps on laion 6a resized to a max minimum dimension of 1024 and
93
+ then filtered to contain only minimum 1024 images. We found the further high resolution finetuning was
94
+ necessary for image quality.
95
+
96
+ #### Compute
97
+ one 8xA100 machine
98
+
99
+ #### Batch size
100
+ Data parallel with a single gpu batch size of 8 for a total batch size of 64.
101
+
102
+ #### Hyper Parameters
103
+ Constant learning rate of 1e-4 scaled by batch size for total learning rate of 64e-4
104
+
105
+ #### Mixed precision
106
+ fp16
config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "ControlNetModel",
3
+ "_diffusers_version": "0.20.0.dev0",
4
+ "_name_or_path": "../controlnet-1-0-canny/checkpoint-20000/controlnet",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": "text_time",
7
+ "addition_embed_type_num_heads": 64,
8
+ "addition_time_embed_dim": 256,
9
+ "attention_head_dim": [
10
+ 5,
11
+ 10,
12
+ 20
13
+ ],
14
+ "block_out_channels": [
15
+ 320,
16
+ 640,
17
+ 1280
18
+ ],
19
+ "class_embed_type": null,
20
+ "conditioning_channels": 3,
21
+ "conditioning_embedding_out_channels": [
22
+ 16,
23
+ 32,
24
+ 96,
25
+ 256
26
+ ],
27
+ "controlnet_conditioning_channel_order": "rgb",
28
+ "cross_attention_dim": 2048,
29
+ "down_block_types": [
30
+ "DownBlock2D",
31
+ "CrossAttnDownBlock2D",
32
+ "CrossAttnDownBlock2D"
33
+ ],
34
+ "downsample_padding": 1,
35
+ "encoder_hid_dim": null,
36
+ "encoder_hid_dim_type": null,
37
+ "flip_sin_to_cos": true,
38
+ "freq_shift": 0,
39
+ "global_pool_conditions": false,
40
+ "in_channels": 4,
41
+ "layers_per_block": 2,
42
+ "mid_block_scale_factor": 1,
43
+ "norm_eps": 1e-05,
44
+ "norm_num_groups": 32,
45
+ "num_attention_heads": null,
46
+ "num_class_embeds": null,
47
+ "only_cross_attention": false,
48
+ "projection_class_embeddings_input_dim": 2816,
49
+ "resnet_time_scale_shift": "default",
50
+ "transformer_layers_per_block": [
51
+ 1,
52
+ 2,
53
+ 10
54
+ ],
55
+ "upcast_attention": null,
56
+ "use_linear_projection": true
57
+ }
diffusion_pytorch_model.fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a42da57d6e2fd6ec786ccfea1cf1a06d2c1d91b2d8a14c7de3a67553b10b2948
3
+ size 2502401039
diffusion_pytorch_model.fp16.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:702c15197c89a18e8bd5eaff5ea61793ce35964853c23953a5e3a0c96820cf52
3
+ size 2256535552