murawaki commited on
Commit
c963228
·
1 Parent(s): 691922d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -28,11 +28,11 @@ You can use this model directly with a pipeline for text generation.
28
  >>> set_seed(5)
29
  >>> generator("昨日私は京都で", max_length=30, do_sample=True, num_return_sequences=5)
30
 
31
- [{'generated_text': '昨日私は京都で仕事していたんですけど、ある日突然京都にいる私'},
32
- {'generated_text': '昨日私は京都で就職し、母と一緒に奈良県の商工会議所に行ってき'},
33
- {'generated_text': '昨日私は京都ではありませんが、自分の住んでる事について色々と'},
34
- {'generated_text': '昨日私は京都では地図を見ることしかしない、京福電車のホームで'},
35
- {'generated_text': '昨日私は京都でこみちに住み始めた時からある不思議な現象で、そ'}]
36
  ```
37
 
38
  You can also use this model to get the features of a given text.
@@ -67,7 +67,7 @@ The following hyperparameters were used during pre-training:
67
  - weight_decay: 0.01
68
  - lr_scheduler_type: linear
69
  - max_grad_norm: 1.0
70
- - max_steps: 500,000 (but terminated at *** steps)
71
  - warmup_steps: 10,000
72
 
73
- The eval loss was 1.60 while the eval accuracy was 0.635. The evaluation set consists of 5,000 randomly sampled documents from each of the training corpora.
 
28
  >>> set_seed(5)
29
  >>> generator("昨日私は京都で", max_length=30, do_sample=True, num_return_sequences=5)
30
 
31
+ [{'generated_text': '昨日私は京都であの日に、あんなに頑張ったのに…と思った。私は'},
32
+ {'generated_text': '昨日私は京都で開かれた大阪市内で会場見学をしました。そしてそ'},
33
+ {'generated_text': '昨日私は京都で行われました。その時はまだ若手が多数入学して何'},
34
+ {'generated_text': '昨日私は京都では雪が解けるまで寝た様子があります・・・(;´'},
35
+ {'generated_text': '昨日私は京都でこみ上げてきたものを写真撮るため、駅近くのセン'}]
36
  ```
37
 
38
  You can also use this model to get the features of a given text.
 
67
  - weight_decay: 0.01
68
  - lr_scheduler_type: linear
69
  - max_grad_norm: 1.0
70
+ - max_steps: 500,000 (but terminated at 142,000 steps ~= 3.0 epochs)
71
  - warmup_steps: 10,000
72
 
73
+ The eval loss was 1.597 while the eval accuracy was 0.6359. The evaluation set consists of 5,000 randomly sampled documents from each of the training corpora.