File size: 1,304 Bytes
b9e18f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- kul-speech-lab/CGN
metrics:
- wer
model-index:
- name: Whisper Large CGN
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: kul-speech-lab/CGN
type: kul-speech-lab/CGN
config: cgn-dev.py
split: test
metrics:
- name: Wer
type: wer
value: 9.6159
---
# Whisper Large CGN
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the kul-speech-lab/CGN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.23932012915611267
- Wer: 9.615871912312803
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- gradient_accumulation_steps: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 15000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
Whisper large model finetuned on Flemish part of Corpus Gesproken Nederlands (CGN).
|