File size: 1,704 Bytes
6f73c89
 
baf8584
6f73c89
 
 
baf8584
6f73c89
 
 
 
 
 
baf8584
6f73c89
baf8584
6f73c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
model-index:
- name: nectar_aihub_model_10000steps
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nectar_aihub_model_10000steps

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1407
- Cer: 10.7869

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Cer     |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.2001        | 0.1743 | 2000  | 0.1952          | 13.8677 |
| 0.1786        | 0.3486 | 4000  | 0.1752          | 11.6286 |
| 0.1438        | 0.5229 | 6000  | 0.1595          | 11.4573 |
| 0.1521        | 0.6972 | 8000  | 0.1470          | 10.8939 |
| 0.1396        | 0.8715 | 10000 | 0.1407          | 10.7869 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1