File size: 11,331 Bytes
f1a03c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Phi3-V.
"""
import re
from typing import List, Optional, Union
import torch
import transformers
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
from transformers.utils import TensorType
from .image_processing_phi3_v import Phi3VImageProcessor
transformers.Phi3VImageProcessor = Phi3VImageProcessor
class Phi3VProcessor(ProcessorMixin):
r"""
Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
[`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
Args:
image_processor ([`Phi3VImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "Phi3VImageProcessor"
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
special_image_token = "<|image|>"
def __init__(self, image_processor, tokenizer):
self.image_processor = image_processor
self.tokenizer = tokenizer
self.num_img_tokens = image_processor.num_img_tokens
self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
def __call__(
self,
text: Union[TextInput, List[TextInput]],
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if images is not None:
image_inputs = self.image_processor(images, return_tensors=return_tensors)
else:
image_inputs = {}
inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
return inputs
def calc_num_image_tokens(self, images: ImageInput):
""" Calculate the number of image tokens for each image.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
"""
return self.image_processor.calc_num_image_tokens(images)
def calc_num_image_tokens_from_image_size(self, width, height):
""" Calculate the number of image token for an image with given width and height.
Args:
width (`int`):
Width of the image.
height (`int`):
Height of the image.
"""
return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
@property
def special_image_token_id(self):
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
def get_special_image_token_id(self):
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
if not len(images):
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
return BatchFeature(data={**model_inputs})
pattern = r"<\|image_\d+\|>"
prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
if 'num_img_tokens' in images:
num_img_tokens = images['num_img_tokens']
else:
assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
num_crops = images['num_crops']
num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
images, image_sizes = images['pixel_values'], images['image_sizes']
# image_tags needs to start from 1 to n
image_tags = re.findall(pattern, texts)
# image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
# image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
unique_image_ids = sorted(list(set(image_ids)))
# image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
# check the condition
assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
# total images must be the same as the number of image tags
assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
def insert_separator(X, sep_list):
if len(X) > len(sep_list):
sep_list.append([])
return [ele for sublist in zip(X, sep_list) for ele in sublist]
input_ids = []
offset = 0
for x in insert_separator(prompt_chunks, image_ids_pad):
input_ids.extend(x[offset:])
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
attention_mask = (input_ids > -1000000).to(torch.long)
return BatchFeature(data={"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": images,
"image_sizes": image_sizes})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |