Update README.md
Browse files
README.md
CHANGED
@@ -148,4 +148,115 @@ grid
|
|
148 |
|
149 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/R7sr9kAwZjRk_80oMY54h.png)
|
150 |
|
|
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/R7sr9kAwZjRk_80oMY54h.png)
|
150 |
|
151 |
+
## Fine-tuning script
|
152 |
|
153 |
+
Download this script: [SDXL DreamBooth-LoRA_Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/SDXL_DreamBooth_LoRA_Fine-Tune.ipynb)
|
154 |
+
|
155 |
+
You need to create a local folder ```leaf_concept_dir_SDXL``` and add the leaf images (provided in this repository, see subfolder).
|
156 |
+
|
157 |
+
The code will automatically download the training script.
|
158 |
+
|
159 |
+
The training script can handle custom prompts associated with each image, which are generated using BLIP.
|
160 |
+
|
161 |
+
For instance, for the images used here, they are:
|
162 |
+
|
163 |
+
```raw
|
164 |
+
['<leaf microstructure>, a close up of a green plant with a lot of small holes',
|
165 |
+
'<leaf microstructure>, a close up of a leaf with a small insect on it',
|
166 |
+
'<leaf microstructure>, a close up of a plant with a lot of green leaves',
|
167 |
+
'<leaf microstructure>, a close up of a green plant with a yellow light',
|
168 |
+
'<leaf microstructure>, a close up of a green plant with a white center',
|
169 |
+
'<leaf microstructure>, arafed leaf with a white line on the center',
|
170 |
+
'<leaf microstructure>, a close up of a leaf with a yellow light shining through it',
|
171 |
+
'<leaf microstructure>, arafed image of a green plant with a yellow cross']
|
172 |
+
```
|
173 |
+
|
174 |
+
Training then proceeds as:
|
175 |
+
|
176 |
+
```python
|
177 |
+
HF_username = 'lamm-mit'
|
178 |
+
|
179 |
+
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0"
|
180 |
+
pretrained_vae_model_name_or_path="madebyollin/sdxl-vae-fp16-fix"
|
181 |
+
|
182 |
+
instance_prompt ="<leaf microstructure>"
|
183 |
+
instance_data_dir = "./leaf_concept_dir_SDXL/"
|
184 |
+
|
185 |
+
val_prompt = "a vase that resembles a <leaf microstructure>, high quality"
|
186 |
+
val_epochs = 100
|
187 |
+
|
188 |
+
instance_output_dir="leaf_LoRA_SDXL_V10" #for checkpointing
|
189 |
+
```
|
190 |
+
|
191 |
+
Dataset generatio with custom per-image captions
|
192 |
+
```python
|
193 |
+
import requests
|
194 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration
|
195 |
+
import torch
|
196 |
+
import glob
|
197 |
+
from PIL import Image
|
198 |
+
import json
|
199 |
+
|
200 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
201 |
+
|
202 |
+
# load the processor and the captioning model
|
203 |
+
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
204 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large",torch_dtype=torch.float16).to(device)
|
205 |
+
|
206 |
+
# captioning utility
|
207 |
+
def caption_images(input_image):
|
208 |
+
inputs = blip_processor(images=input_image, return_tensors="pt").to(device, torch.float16)
|
209 |
+
pixel_values = inputs.pixel_values
|
210 |
+
|
211 |
+
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
|
212 |
+
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
213 |
+
return generated_caption
|
214 |
+
|
215 |
+
caption_prefix = f"{instance_prompt}, "
|
216 |
+
with open(f'{instance_data_dir}metadata.jsonl', 'w') as outfile:
|
217 |
+
for img in imgs_and_paths:
|
218 |
+
caption = caption_prefix + caption_images(img[1]).split("\n")[0]
|
219 |
+
entry = {"file_name":img[0].split("/")[-1], "prompt": caption}
|
220 |
+
json.dump(entry, outfile)
|
221 |
+
outfile.write('\n')
|
222 |
+
```
|
223 |
+
This produces a JSON file in the ```instance_data_dir``` directory:
|
224 |
+
|
225 |
+
```json
|
226 |
+
{"file_name": "0.jpeg", "prompt": "<leaf microstructure>, a close up of a green plant with a lot of small holes"}
|
227 |
+
{"file_name": "1.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a small insect on it"}
|
228 |
+
{"file_name": "2.jpeg", "prompt": "<leaf microstructure>, a close up of a plant with a lot of green leaves"}
|
229 |
+
{"file_name": "3.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a yellow substance in it"}
|
230 |
+
{"file_name": "87.jpg", "prompt": "<leaf microstructure>, a close up of a green plant with a yellow light"}
|
231 |
+
{"file_name": "88.jpg", "prompt": "<leaf microstructure>, a close up of a green plant with a white center"}
|
232 |
+
{"file_name": "90.jpg", "prompt": "<leaf microstructure>, arafed leaf with a white line on the center"}
|
233 |
+
{"file_name": "91.jpg", "prompt": "<leaf microstructure>, arafed image of a green leaf with a white spot"}
|
234 |
+
{"file_name": "92.jpg", "prompt": "<leaf microstructure>, a close up of a leaf with a yellow light shining through it"}
|
235 |
+
{"file_name": "94.jpg", "prompt": "<leaf microstructure>, arafed image of a green plant with a yellow cross"}
|
236 |
+
```
|
237 |
+
|
238 |
+
```raw
|
239 |
+
!accelerate launch train_dreambooth_lora_sdxl.py \
|
240 |
+
--pretrained_model_name_or_path="{pretrained_model_name_or_path}" \
|
241 |
+
--pretrained_vae_model_name_or_path="{pretrained_vae_model_name_or_path}"\
|
242 |
+
--dataset_name="{instance_data_dir}" \
|
243 |
+
--output_dir="{instance_output_dir}" \
|
244 |
+
--caption_column="prompt"\
|
245 |
+
--mixed_precision="fp16" \
|
246 |
+
--instance_prompt="{instance_prompt}" \
|
247 |
+
--validation_prompt="{val_prompt}" \
|
248 |
+
--validation_epochs="{val_epochs}" \
|
249 |
+
--resolution=1024 \
|
250 |
+
--train_batch_size=1 \
|
251 |
+
--gradient_accumulation_steps=3 \
|
252 |
+
--gradient_checkpointing \
|
253 |
+
--learning_rate=1e-4 \
|
254 |
+
--snr_gamma=5.0 \
|
255 |
+
--lr_scheduler="constant" \
|
256 |
+
--lr_warmup_steps=0 \
|
257 |
+
--mixed_precision="fp16" \
|
258 |
+
--use_8bit_adam \
|
259 |
+
--max_train_steps=500 \
|
260 |
+
--checkpointing_steps=500 \
|
261 |
+
--seed="0"
|
262 |
+
```
|