File size: 8,783 Bytes
a1df472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HHxHa_96z0gM"
      },
      "source": [
        "# Stable Diffusion 3 medium fine-tuned for leaf-inspired generation\n",
        "\n",
        "Markus J. Buehler, MIT\n",
        "[email protected]\n",
        "\n",
        "https://huggingface.co/lamm-mit/stable-diffusion-3-medium-leaf-inspired/"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 531
        },
        "id": "vQzwg68ByEiC",
        "outputId": "895980fe-52df-49f5-fd02-bf0b2846f12f"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (0.23.5)\n",
            "Collecting huggingface_hub\n",
            "  Downloading huggingface_hub-0.24.0-py3-none-any.whl (419 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m419.0/419.0 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (3.15.4)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (2023.6.0)\n",
            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (24.1)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (6.0.1)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (2.31.0)\n",
            "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.66.4)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.12.2)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (3.7)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (2024.7.4)\n",
            "Installing collected packages: huggingface_hub\n",
            "  Attempting uninstall: huggingface_hub\n",
            "    Found existing installation: huggingface-hub 0.23.5\n",
            "    Uninstalling huggingface-hub-0.23.5:\n",
            "      Successfully uninstalled huggingface-hub-0.23.5\n",
            "Successfully installed huggingface_hub-0.24.0\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "application/vnd.colab-display-data+json": {
              "pip_warning": {
                "packages": [
                  "huggingface_hub"
                ]
              },
              "id": "991053a6adb54643aed1b64c87e5d2b8"
            }
          },
          "metadata": {}
        }
      ],
      "source": [
        "!pip install -q git+https://github.com/huggingface/diffusers.git\n",
        "!pip install --upgrade huggingface_hub"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### The Stable Diffusion 3 medium model is gated. Get access at:\n",
        "\n",
        "https://huggingface.co/stabilityai/stable-diffusion-3-medium\n",
        "\n",
        "Make sure you add your Hugging Face token and sign in."
      ],
      "metadata": {
        "id": "HaYOIlR25nb2"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "hf_token = \"hf_----\"\n",
        "from huggingface_hub import login\n",
        "login(token=hf_token_write)"
      ],
      "metadata": {
        "id": "hlVgYHNH5hgw"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GSfz5tNZyC7V"
      },
      "outputs": [],
      "source": [
        "from diffusers import DiffusionPipeline\n",
        "import torch\n",
        "import os\n",
        "from datetime import datetime\n",
        "from PIL import Image\n",
        "\n",
        "def generate_filename(base_name, extension=\".png\"):\n",
        "    timestamp = datetime.now().strftime(\"%Y%m%d_%H%M%S\")\n",
        "    return f\"{base_name}_{timestamp}{extension}\"\n",
        "\n",
        "def save_image(image, directory, base_name=\"image_grid\"):\n",
        "\n",
        "    filename = generate_filename(base_name)\n",
        "    file_path = os.path.join(directory, filename)\n",
        "    image.save(file_path)\n",
        "    print(f\"Image saved as {file_path}\")\n",
        "\n",
        "def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name=\"image_grid\",\n",
        "              save_individual_files=False):\n",
        "\n",
        "    if not os.path.exists(save_dir):\n",
        "        os.makedirs(save_dir)\n",
        "\n",
        "    assert len(imgs) == rows * cols\n",
        "\n",
        "    w, h = imgs[0].size\n",
        "    grid = Image.new('RGB', size=(cols * w, rows * h))\n",
        "    grid_w, grid_h = grid.size\n",
        "\n",
        "    for i, img in enumerate(imgs):\n",
        "        grid.paste(img, box=(i % cols * w, i // cols * h))\n",
        "        if save_individual_files:\n",
        "            save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')\n",
        "\n",
        "    if save and save_dir:\n",
        "        save_image(grid, save_dir, base_name)\n",
        "\n",
        "    return grid"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "xaeDDt0IyYvh"
      },
      "outputs": [],
      "source": [
        "repo_id_load='lamm-mit/stable-diffusion-3-medium-leaf-inspired'\n",
        "\n",
        "pipeline = DiffusionPipeline.from_pretrained (\"stabilityai/stable-diffusion-3-medium-diffusers\",\n",
        "                                              torch_dtype=torch.float16\n",
        "                                             )\n",
        "\n",
        "pipeline.load_lora_weights(repo_id_load)\n",
        "pipeline=pipeline.to('cuda')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "vqdIKEdy0BrU"
      },
      "outputs": [],
      "source": [
        "prompt          = \"a cube in the shape of a <leaf microstructure>\"\n",
        "negative_prompt = \"\"\n",
        "\n",
        "num_samples = 2\n",
        "num_rows = 2\n",
        "n_steps=75\n",
        "guidance_scale=15\n",
        "all_images = []\n",
        "\n",
        "for _ in range(num_rows):\n",
        "    image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,\n",
        "                     guidance_scale=guidance_scale,negative_prompt=negative_prompt).images\n",
        "\n",
        "    all_images.extend(image)\n",
        "\n",
        "grid = image_grid(all_images, num_rows, num_samples,\n",
        "                  save_individual_files=True,\n",
        "                  save_dir='generated_images',\n",
        "                  base_name=\"image_grid\",\n",
        "                 )\n",
        "grid"
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "2yGuDJTH2zvx"
      },
      "execution_count": null,
      "outputs": []
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "A100",
      "machine_shape": "hm",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}