Update README.md
Browse files
README.md
CHANGED
@@ -61,18 +61,19 @@ Performance on multi-sentence texts is not guaranteed, please be aware.
|
|
61 |
|
62 |
```python
|
63 |
# pip install bitsandbytes transformers peft torch
|
64 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
65 |
import torch
|
66 |
|
67 |
config = PeftConfig.from_pretrained("lang-uk/dragoman")
|
68 |
quant_config = BitsAndBytesConfig(
|
69 |
load_in_4bit=True,
|
70 |
bnb_4bit_quant_type="nf4",
|
71 |
-
bnb_4bit_compute_dtype=float16,
|
72 |
bnb_4bit_use_double_quant=False,
|
73 |
)
|
74 |
|
75 |
-
model =
|
76 |
"mistralai/Mistral-7B-v0.1", quantization_config=quant_config
|
77 |
)
|
78 |
model = PeftModel.from_pretrained(model, "lang-uk/dragoman").to("cuda")
|
@@ -83,7 +84,7 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
83 |
input_text = "[INST] who holds this neighborhood? [/INST]" # model input should adhere to this format
|
84 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
85 |
|
86 |
-
outputs = model.generate(**input_ids)
|
87 |
print(tokenizer.decode(outputs[0]))
|
88 |
```
|
89 |
|
|
|
61 |
|
62 |
```python
|
63 |
# pip install bitsandbytes transformers peft torch
|
64 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
65 |
+
from peft import PeftConfig, PeftModel
|
66 |
import torch
|
67 |
|
68 |
config = PeftConfig.from_pretrained("lang-uk/dragoman")
|
69 |
quant_config = BitsAndBytesConfig(
|
70 |
load_in_4bit=True,
|
71 |
bnb_4bit_quant_type="nf4",
|
72 |
+
bnb_4bit_compute_dtype=torch.float16,
|
73 |
bnb_4bit_use_double_quant=False,
|
74 |
)
|
75 |
|
76 |
+
model = AutoModelForCausalLM.from_pretrained(
|
77 |
"mistralai/Mistral-7B-v0.1", quantization_config=quant_config
|
78 |
)
|
79 |
model = PeftModel.from_pretrained(model, "lang-uk/dragoman").to("cuda")
|
|
|
84 |
input_text = "[INST] who holds this neighborhood? [/INST]" # model input should adhere to this format
|
85 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
86 |
|
87 |
+
outputs = model.generate(**input_ids, num_beams=10)
|
88 |
print(tokenizer.decode(outputs[0]))
|
89 |
```
|
90 |
|