File size: 2,362 Bytes
72c38f6
 
c9d75d3
72c38f6
 
 
 
 
 
c35b46a
 
 
 
 
 
 
 
 
 
 
 
9300230
 
 
 
 
 
 
 
 
 
 
e99c43f
a467ebd
e99c43f
93ea7d2
e99c43f
a467ebd
 
 
 
cdc26c4
 
4ea501d
e99c43f
aed167b
 
 
e99c43f
a2d2234
aed167b
a2d2234
aed167b
 
a467ebd
aed167b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

---
language: 
  - "lb"
license: "mit"
tags:
- "luxembourgish"
- "lëtzebuergesch"
- "text generation"
model-index:
- name: "LuxGPT2"
  results:
  - task:
      type: "text-generation"            # Required. Example: automatic-speech-recognition
      name: "Text Generation"             # Optional. Example: Speech Recognition
    dataset:
      type: "LuxembourgishTestDataset"          # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
      name: "Luxembourgish Test Dataset"          # Required. A pretty name for the dataset. Example: Common Voice (French)
    metrics:
      - type: "accuracy"        # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: "0.33"      # Required. Example: 20.90
- name: "LuxGPT2"
  results:
  - task:
      type: "text-generation"            # Required. Example: automatic-speech-recognition
      name: "Text Generation"             # Optional. Example: Speech Recognition
    dataset:
      type: "LuxembourgishTestDataset"          # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
      name: "Luxembourgish Test Dataset"          # Required. A pretty name for the dataset. Example: Common Voice (French)
    metrics:
      - type: "perplexity"        # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: "46.69"      # Required. Example: 20.90
---
## LuxGPT-2 

GPT-2 model for Text Generation in luxembourgish language, trained on 667 MB of text data, consisting of RTL.lu news articles, comments, parlament speeches, the luxembourgish Wikipedia, Newscrawl, Webcrawl and subtitles.
The training took place on a 32 GB Nvidia Tesla V100
- with an initial learning rate of 5e-5
- with Batch size 4
- for 109 hours
- for 30 epochs
- using the transformers library
<br/>
more detailed training information can be found in the "trainer_state.json".  

## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("laurabernardy/LuxGPT2")

model = AutoModelForCausalLM.from_pretrained("laurabernardy/LuxGPT2")
```

## Limitations and Biases

See the [GPT2 model card](https://huggingface.co/gpt2) for considerations on limitations and bias. See the [GPT2 documentation](https://huggingface.co/transformers/model_doc/gpt2.html) for details on GPT2.