|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from collections import OrderedDict |
|
from typing import Any, Dict, Optional |
|
|
|
import fire |
|
import torch |
|
from safetensors import safe_open |
|
from safetensors.torch import save_file |
|
from tqdm import tqdm |
|
from transformers.modeling_utils import ( |
|
SAFE_WEIGHTS_INDEX_NAME, |
|
SAFE_WEIGHTS_NAME, |
|
WEIGHTS_INDEX_NAME, |
|
WEIGHTS_NAME, |
|
shard_checkpoint, |
|
) |
|
from transformers.utils import check_min_version |
|
|
|
try: |
|
check_min_version("4.34.0") |
|
except Exception: |
|
raise ValueError("Please upgrade `transformers` to 4.34.0") |
|
|
|
CONFIG_NAME = "config.json" |
|
|
|
|
|
def load_existing_shards( |
|
output_dir: str, save_safetensors: bool |
|
) -> Dict[str, torch.Tensor]: |
|
existing_state_dict = OrderedDict() |
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME |
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME |
|
|
|
if os.path.exists(os.path.join(output_dir, index_name)): |
|
with open(os.path.join(output_dir, index_name), "r", encoding="utf-8") as f: |
|
index = json.load(f) |
|
|
|
for shard_file in tqdm( |
|
index["weight_map"].values(), desc="Loading existing shards" |
|
): |
|
if os.path.exists(os.path.join(output_dir, shard_file)): |
|
if save_safetensors: |
|
with safe_open( |
|
os.path.join(output_dir, shard_file), |
|
framework="pt", |
|
device="cpu", |
|
) as f: |
|
for key in f.keys(): |
|
existing_state_dict[key] = f.get_tensor(key) |
|
else: |
|
shard = torch.load( |
|
os.path.join(output_dir, shard_file), map_location="cpu" |
|
) |
|
existing_state_dict.update(shard) |
|
|
|
return existing_state_dict |
|
|
|
|
|
def save_weight( |
|
input_dir: str, |
|
output_dir: str, |
|
shard_size: str, |
|
save_safetensors: bool, |
|
continue_conversion: bool, |
|
) -> str: |
|
qwen_state_dict: Dict[str, torch.Tensor] = OrderedDict() |
|
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"): |
|
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith( |
|
".safetensors" |
|
): |
|
with safe_open( |
|
os.path.join(input_dir, filepath), framework="pt", device="cpu" |
|
) as f: |
|
for key in f.keys(): |
|
qwen_state_dict[key] = f.get_tensor(key) |
|
|
|
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() |
|
if continue_conversion: |
|
llama2_state_dict = load_existing_shards(output_dir, save_safetensors) |
|
|
|
torch_dtype = None |
|
for key, value in tqdm(qwen_state_dict.items(), desc="Convert format"): |
|
if torch_dtype is None: |
|
torch_dtype = value.dtype |
|
if "self_attn.o_proj" in key: |
|
llama2_state_dict[key] = value |
|
bias_key = key.replace(".weight", ".bias") |
|
if bias_key not in llama2_state_dict: |
|
llama2_state_dict[bias_key] = torch.zeros_like(value[:, 0]).squeeze() |
|
else: |
|
llama2_state_dict[key] = value |
|
|
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME |
|
shards, index = shard_checkpoint( |
|
llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name |
|
) |
|
|
|
for shard_file, shard in tqdm(shards.items(), desc="Save weights"): |
|
if save_safetensors: |
|
save_file( |
|
shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"} |
|
) |
|
else: |
|
torch.save(shard, os.path.join(output_dir, shard_file)) |
|
|
|
if index is None: |
|
print(f"Model weights saved in {os.path.join(output_dir, weights_name)}") |
|
else: |
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME |
|
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: |
|
json.dump(index, f, indent=2, sort_keys=True) |
|
print(f"Model weights saved in {output_dir}") |
|
|
|
return str(torch_dtype).replace("torch.", "") |
|
|
|
|
|
def save_config(input_dir: str, output_dir: str, torch_dtype: str): |
|
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: |
|
qwen_config_dict: Dict[str, Any] = json.load(f) |
|
|
|
llama2_config_dict: Dict[str, Any] = OrderedDict() |
|
llama2_config_dict["architectures"] = ["LlamaForCausalLM"] |
|
llama2_config_dict["attention_bias"] = True |
|
llama2_config_dict["attention_dropout"] = qwen_config_dict["attention_dropout"] |
|
llama2_config_dict["hidden_act"] = "silu" |
|
llama2_config_dict["hidden_size"] = qwen_config_dict["hidden_size"] |
|
llama2_config_dict["initializer_range"] = qwen_config_dict["initializer_range"] |
|
llama2_config_dict["intermediate_size"] = qwen_config_dict["intermediate_size"] |
|
llama2_config_dict["max_position_embeddings"] = 32767 |
|
llama2_config_dict["max_window_layers"] = qwen_config_dict["max_window_layers"] |
|
llama2_config_dict["model_type"] = "llama" |
|
llama2_config_dict["num_attention_heads"] = qwen_config_dict["num_attention_heads"] |
|
llama2_config_dict["num_hidden_layers"] = qwen_config_dict["num_hidden_layers"] |
|
llama2_config_dict["num_key_value_heads"] = qwen_config_dict["num_key_value_heads"] |
|
llama2_config_dict["pretraining_tp"] = 1 |
|
llama2_config_dict["rms_norm_eps"] = qwen_config_dict["rms_norm_eps"] |
|
llama2_config_dict["rope_theta"] = qwen_config_dict["rope_theta"] |
|
llama2_config_dict["rope_scaling"] = None |
|
llama2_config_dict["sliding_window"] = qwen_config_dict["sliding_window"] |
|
llama2_config_dict["tie_word_embeddings"] = qwen_config_dict["tie_word_embeddings"] |
|
llama2_config_dict["torch_dtype"] = torch_dtype |
|
llama2_config_dict["transformers_version"] = "4.37.0" |
|
llama2_config_dict["use_cache"] = True |
|
llama2_config_dict["use_sliding_window"] = qwen_config_dict["use_sliding_window"] |
|
llama2_config_dict["vocab_size"] = qwen_config_dict["vocab_size"] |
|
|
|
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: |
|
json.dump(llama2_config_dict, f, indent=2) |
|
print(f"Model config saved in {os.path.join(output_dir, CONFIG_NAME)}") |
|
|
|
|
|
def llamafy_qwen_v2( |
|
input_dir: str, |
|
output_dir: str, |
|
shard_size: Optional[str] = "4GB", |
|
save_safetensors: Optional[bool] = False, |
|
continue_conversion: Optional[bool] = False, |
|
): |
|
if not continue_conversion: |
|
try: |
|
os.makedirs(output_dir, exist_ok=False) |
|
except Exception as e: |
|
raise ValueError( |
|
"Output dir already exists. Use --continue_conversion to resume." |
|
) from e |
|
else: |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
torch_dtype = save_weight( |
|
input_dir, output_dir, shard_size, save_safetensors, continue_conversion |
|
) |
|
save_config(input_dir, output_dir, torch_dtype) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(llamafy_qwen_v2) |
|
|