leeyunjai commited on
Commit
88ae538
·
1 Parent(s): 2e0b9c8

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +74 -0
main.py CHANGED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import caption_model
3
+ from transformers import BertTokenizer
4
+ import torchvision
5
+ from PIL import Image
6
+ from configuration import Config
7
+ import numpy as np
8
+
9
+ def under_max(image):
10
+ if image.mode != 'RGB':
11
+ image = image.convert("RGB")
12
+
13
+ shape = np.array(image.size, dtype=np.float)
14
+ long_dim = max(shape)
15
+ scale = 299 / long_dim
16
+
17
+ new_shape = (shape * scale).astype(int)
18
+ image = image.resize(new_shape)
19
+
20
+ return image
21
+
22
+ class Model(object):
23
+ def __init__(self, gpu=0):
24
+ config = Config()
25
+ config.device = 'cuda:{}'.format(gpu)
26
+ model, _ = caption_model.build_model(config)
27
+ checkpoint = torch.load('./checkpoint.pth', map_location='cpu')
28
+ model.load_state_dict(checkpoint['model'])
29
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
30
+ start_token = tokenizer.convert_tokens_to_ids(tokenizer._cls_token)
31
+ end_token = tokenizer.convert_tokens_to_ids(tokenizer._sep_token)
32
+
33
+ self.caption = torch.zeros((1, config.max_position_embeddings), dtype=torch.long).to(config.device)
34
+ self.cap_mask = torch.ones((1, config.max_position_embeddings), dtype=torch.bool).to(config.device)
35
+
36
+ self.caption[:, 0] = start_token
37
+ self.cap_mask[:, 0] = False
38
+
39
+ self.val_transform = torchvision.transforms.Compose([
40
+ torchvision.transforms.Lambda(under_max),
41
+ torchvision.transforms.ToTensor(),
42
+ torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
43
+ ])
44
+ model.to(config.device)
45
+ self.model = model
46
+ self.config = config
47
+ self.tokenizer = tokenizer
48
+
49
+ def evaluate(self, im):
50
+ self.model.eval()
51
+ for i in range(self.config.max_position_embeddings - 1):
52
+ predictions = self.model(im.to(self.config.device), self.caption.to(self.config.device), self.cap_mask.to(self.config.device))
53
+ predictions = predictions[:, i, :]
54
+ predicted_id = torch.argmax(predictions, axis=-1).to(self.config.device)
55
+
56
+ if predicted_id[0] == 102:
57
+ return self.caption
58
+
59
+ self.caption[:, i+1] = predicted_id[0]
60
+ self.cap_mask[:, i+1] = False
61
+ return caption
62
+
63
+ def predict(self, image_path):
64
+ image = Image.open(image_path)
65
+ image = self.val_transform(image)
66
+ image = image.unsqueeze(0)
67
+ output = self.evaluate(image)
68
+ return self.tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
69
+
70
+ if __name__ == "__main__":
71
+ model = Model()
72
+ result = model.predict("./image.jpg")
73
+ print(result)
74
+