Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,61 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
pipeline_tag: image-classification
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
pipeline_tag: image-classification
|
4 |
+
---
|
5 |
+
|
6 |
+
# AI Anime Image Detector ViT
|
7 |
+
|
8 |
+
This model is a proof of concept model of detecting anime styled AI images. Using Vision Transformer, it was trained on 1M human-made real and 217K AI generated anime images. During training either type appeared in equal amount to avoid biases. The model was trained on a single RTX 3090 GPU for about 40 hours, ~35 epochs.
|
9 |
+
|
10 |
+
## Evaluation
|
11 |
+
|
12 |
+
Each checkpoint was evaluated on 500-500 real and AI images.
|
13 |
+
- Training Loss: 0.1009
|
14 |
+
- Eval Loss: 0.1386
|
15 |
+
|
16 |
+
It seems like using random crops helped the model to generalize better, however, the training dataset only contained 512x512 images, which meant that every cropped image had bilinear interpolation. Training the model on 1024x1024 images could probably further improve its performance.
|
17 |
+
|
18 |
+
We did a small comparison with the current available AI image detectors:
|
19 |
+
|
20 |
+
| Image | Nahrawy/AIorNot | umm-maybe/AI-image-detector | Organika/sdxl-detector | Ours |
|
21 |
+
|--------------------|-----------------|-----------------------------|------------------------|------------|
|
22 |
+
| D:\test\ai_1.jpg | ai (100%) | human (86%) | artificial (100%) | ai (100%) |
|
23 |
+
| D:\test\ai_2.jpg | ai (99%) | human (96%) | artificial (100%) | ai (100%) |
|
24 |
+
| D:\test\ai_3.jpg | ai (77%) | human (98%) | artificial (100%) | ai (100%) |
|
25 |
+
| D:\test\ai_4.jpg | real (66%) | human (100%) | human (100%) | real (100%)|
|
26 |
+
| D:\test\ai_5.jpg | ai (51%) | human (99%) | artificial (55%) | real (65%) |
|
27 |
+
| D:\test\ai_6.jpg | ai (100%) | human (98%) | artificial (100%) | ai (84%) |
|
28 |
+
| D:\test\real_1.jpg | ai (99%) | human (99%) | artificial (100%) | ai (55%) |
|
29 |
+
| D:\test\real_2.jpg | ai (88%) | human (100%) | artificial (100%) | real (85%) |
|
30 |
+
| D:\test\real_3.jpg | ai (95%) | human (96%) | artificial (100%) | real (97%) |
|
31 |
+
| D:\test\real_4.jpg | real (90%) | human (100%) | artificial (97%) | real (94%) |
|
32 |
+
| D:\test\real_5.jpg | ai (75%) | human (100%) | human (57%) | real (100%)|
|
33 |
+
| D:\test\real_6.jpg | ai (89%) | human (98%) | human (100%) | real (99%) |
|
34 |
+
| **Accuracy:** | 50% | 50% | 58% | **75%** |
|
35 |
+
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
|
39 |
+
Example inference code:
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
43 |
+
import torch
|
44 |
+
from PIL import Image
|
45 |
+
|
46 |
+
model = AutoModelForImageClassification.from_pretrained("legekka/AI-Anime-Image-Detector-ViT")
|
47 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("legekka/AI-Anime-Image-Detector-ViT")
|
48 |
+
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
image = Image.open("example.jpg")
|
52 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
53 |
+
|
54 |
+
outputs = model(**inputs)
|
55 |
+
logits = outputs.logits
|
56 |
+
|
57 |
+
label = model.config.id2label[torch.argmax(logits).item()]
|
58 |
+
confidence = torch.nn.functional.softmax(logits, dim=1)[0][torch.argmax(logits)].item()
|
59 |
+
|
60 |
+
print(f"Prediction: {label} ({round(confidence * 100)}%)")
|
61 |
+
```
|