legraphista
commited on
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +163 -0
imatrix.log
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama_model_loader: loaded meta data with 39 key-value pairs and 959 tensors from DeepSeek-Coder-V2-Instruct-IMat-GGUF/DeepSeek-Coder-V2-Instruct.Q8_0.gguf (version GGUF V3 (latest))
|
2 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
3 |
+
llama_model_loader: - kv 0: general.architecture str = deepseek2
|
4 |
+
llama_model_loader: - kv 1: general.name str = DeepSeek-Coder-V2-Instruct
|
5 |
+
llama_model_loader: - kv 2: deepseek2.block_count u32 = 60
|
6 |
+
llama_model_loader: - kv 3: deepseek2.context_length u32 = 163840
|
7 |
+
llama_model_loader: - kv 4: deepseek2.embedding_length u32 = 5120
|
8 |
+
llama_model_loader: - kv 5: deepseek2.feed_forward_length u32 = 12288
|
9 |
+
llama_model_loader: - kv 6: deepseek2.attention.head_count u32 = 128
|
10 |
+
llama_model_loader: - kv 7: deepseek2.attention.head_count_kv u32 = 128
|
11 |
+
llama_model_loader: - kv 8: deepseek2.rope.freq_base f32 = 10000.000000
|
12 |
+
llama_model_loader: - kv 9: deepseek2.attention.layer_norm_rms_epsilon f32 = 0.000001
|
13 |
+
llama_model_loader: - kv 10: deepseek2.expert_used_count u32 = 6
|
14 |
+
llama_model_loader: - kv 11: general.file_type u32 = 7
|
15 |
+
llama_model_loader: - kv 12: deepseek2.leading_dense_block_count u32 = 1
|
16 |
+
llama_model_loader: - kv 13: deepseek2.vocab_size u32 = 102400
|
17 |
+
llama_model_loader: - kv 14: deepseek2.attention.q_lora_rank u32 = 1536
|
18 |
+
llama_model_loader: - kv 15: deepseek2.attention.kv_lora_rank u32 = 512
|
19 |
+
llama_model_loader: - kv 16: deepseek2.attention.key_length u32 = 192
|
20 |
+
llama_model_loader: - kv 17: deepseek2.attention.value_length u32 = 128
|
21 |
+
llama_model_loader: - kv 18: deepseek2.expert_feed_forward_length u32 = 1536
|
22 |
+
llama_model_loader: - kv 19: deepseek2.expert_count u32 = 160
|
23 |
+
llama_model_loader: - kv 20: deepseek2.expert_shared_count u32 = 2
|
24 |
+
llama_model_loader: - kv 21: deepseek2.expert_weights_scale f32 = 16.000000
|
25 |
+
llama_model_loader: - kv 22: deepseek2.rope.dimension_count u32 = 64
|
26 |
+
llama_model_loader: - kv 23: deepseek2.rope.scaling.type str = yarn
|
27 |
+
llama_model_loader: - kv 24: deepseek2.rope.scaling.factor f32 = 40.000000
|
28 |
+
llama_model_loader: - kv 25: deepseek2.rope.scaling.original_context_length u32 = 4096
|
29 |
+
llama_model_loader: - kv 26: deepseek2.rope.scaling.yarn_log_multiplier f32 = 0.100000
|
30 |
+
llama_model_loader: - kv 27: tokenizer.ggml.model str = gpt2
|
31 |
+
llama_model_loader: - kv 28: tokenizer.ggml.pre str = deepseek-llm
|
32 |
+
llama_model_loader: - kv 29: tokenizer.ggml.tokens arr[str,102400] = ["!", "\"", "#", "$", "%", "&", "'", ...
|
33 |
+
llama_model_loader: - kv 30: tokenizer.ggml.token_type arr[i32,102400] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
34 |
+
llama_model_loader: - kv 31: tokenizer.ggml.merges arr[str,99757] = ["Ġ Ġ", "Ġ t", "Ġ a", "i n", "h e...
|
35 |
+
llama_model_loader: - kv 32: tokenizer.ggml.bos_token_id u32 = 100000
|
36 |
+
llama_model_loader: - kv 33: tokenizer.ggml.eos_token_id u32 = 100001
|
37 |
+
llama_model_loader: - kv 34: tokenizer.ggml.padding_token_id u32 = 100001
|
38 |
+
llama_model_loader: - kv 35: tokenizer.ggml.add_bos_token bool = true
|
39 |
+
llama_model_loader: - kv 36: tokenizer.ggml.add_eos_token bool = false
|
40 |
+
llama_model_loader: - kv 37: tokenizer.chat_template str = {% if not add_generation_prompt is de...
|
41 |
+
llama_model_loader: - kv 38: general.quantization_version u32 = 2
|
42 |
+
llama_model_loader: - type f32: 300 tensors
|
43 |
+
llama_model_loader: - type q8_0: 659 tensors
|
44 |
+
llm_load_vocab: special tokens cache size = 2400
|
45 |
+
llm_load_vocab: token to piece cache size = 0.6661 MB
|
46 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
47 |
+
llm_load_print_meta: arch = deepseek2
|
48 |
+
llm_load_print_meta: vocab type = BPE
|
49 |
+
llm_load_print_meta: n_vocab = 102400
|
50 |
+
llm_load_print_meta: n_merges = 99757
|
51 |
+
llm_load_print_meta: n_ctx_train = 163840
|
52 |
+
llm_load_print_meta: n_embd = 5120
|
53 |
+
llm_load_print_meta: n_head = 128
|
54 |
+
llm_load_print_meta: n_head_kv = 128
|
55 |
+
llm_load_print_meta: n_layer = 60
|
56 |
+
llm_load_print_meta: n_rot = 64
|
57 |
+
llm_load_print_meta: n_embd_head_k = 192
|
58 |
+
llm_load_print_meta: n_embd_head_v = 128
|
59 |
+
llm_load_print_meta: n_gqa = 1
|
60 |
+
llm_load_print_meta: n_embd_k_gqa = 24576
|
61 |
+
llm_load_print_meta: n_embd_v_gqa = 16384
|
62 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
63 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
|
64 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
65 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
66 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
67 |
+
llm_load_print_meta: n_ff = 12288
|
68 |
+
llm_load_print_meta: n_expert = 160
|
69 |
+
llm_load_print_meta: n_expert_used = 6
|
70 |
+
llm_load_print_meta: causal attn = 1
|
71 |
+
llm_load_print_meta: pooling type = 0
|
72 |
+
llm_load_print_meta: rope type = 0
|
73 |
+
llm_load_print_meta: rope scaling = yarn
|
74 |
+
llm_load_print_meta: freq_base_train = 10000.0
|
75 |
+
llm_load_print_meta: freq_scale_train = 0.025
|
76 |
+
llm_load_print_meta: n_ctx_orig_yarn = 4096
|
77 |
+
llm_load_print_meta: rope_finetuned = unknown
|
78 |
+
llm_load_print_meta: ssm_d_conv = 0
|
79 |
+
llm_load_print_meta: ssm_d_inner = 0
|
80 |
+
llm_load_print_meta: ssm_d_state = 0
|
81 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
82 |
+
llm_load_print_meta: model type = 236B
|
83 |
+
llm_load_print_meta: model ftype = Q8_0
|
84 |
+
llm_load_print_meta: model params = 235.74 B
|
85 |
+
llm_load_print_meta: model size = 233.41 GiB (8.50 BPW)
|
86 |
+
llm_load_print_meta: general.name = DeepSeek-Coder-V2-Instruct
|
87 |
+
llm_load_print_meta: BOS token = 100000 '<|begin▁of▁sentence|>'
|
88 |
+
llm_load_print_meta: EOS token = 100001 '<|end▁of▁sentence|>'
|
89 |
+
llm_load_print_meta: PAD token = 100001 '<|end▁of▁sentence|>'
|
90 |
+
llm_load_print_meta: LF token = 126 'Ä'
|
91 |
+
llm_load_print_meta: n_layer_dense_lead = 1
|
92 |
+
llm_load_print_meta: n_lora_q = 1536
|
93 |
+
llm_load_print_meta: n_lora_kv = 512
|
94 |
+
llm_load_print_meta: n_ff_exp = 1536
|
95 |
+
llm_load_print_meta: n_expert_shared = 2
|
96 |
+
llm_load_print_meta: expert_weights_scale = 16.0
|
97 |
+
llm_load_print_meta: rope_yarn_log_mul = 0.1000
|
98 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
99 |
+
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
|
100 |
+
ggml_cuda_init: found 1 CUDA devices:
|
101 |
+
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
|
102 |
+
llm_load_tensors: ggml ctx size = 0.87 MiB
|
103 |
+
llm_load_tensors: offloading 5 repeating layers to GPU
|
104 |
+
llm_load_tensors: offloaded 5/61 layers to GPU
|
105 |
+
llm_load_tensors: CPU buffer size = 218873.36 MiB
|
106 |
+
llm_load_tensors: CUDA0 buffer size = 20135.96 MiB
|
107 |
+
....................................................................................................
|
108 |
+
llama_new_context_with_model: n_ctx = 512
|
109 |
+
llama_new_context_with_model: n_batch = 512
|
110 |
+
llama_new_context_with_model: n_ubatch = 512
|
111 |
+
llama_new_context_with_model: flash_attn = 0
|
112 |
+
llama_new_context_with_model: freq_base = 10000.0
|
113 |
+
llama_new_context_with_model: freq_scale = 0.025
|
114 |
+
llama_kv_cache_init: CUDA_Host KV buffer size = 2200.00 MiB
|
115 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 200.00 MiB
|
116 |
+
llama_new_context_with_model: KV self size = 2400.00 MiB, K (f16): 1440.00 MiB, V (f16): 960.00 MiB
|
117 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.39 MiB
|
118 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 1422.00 MiB
|
119 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 81.01 MiB
|
120 |
+
llama_new_context_with_model: graph nodes = 4480
|
121 |
+
llama_new_context_with_model: graph splits = 990
|
122 |
+
|
123 |
+
system_info: n_threads = 32 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
124 |
+
compute_imatrix: tokenizing the input ..
|
125 |
+
compute_imatrix: tokenization took 205.752 ms
|
126 |
+
compute_imatrix: computing over 139 chunks with batch_size 512
|
127 |
+
compute_imatrix: 182.74 seconds per pass - ETA 7 hours 3.33 minutes
|
128 |
+
[1]5.3405,[2]3.6828,[3]3.5942,[4]3.9455,[5]3.8909,[6]3.6837,[7]3.8914,[8]3.7487,[9]4.1827,
|
129 |
+
save_imatrix: stored collected data after 10 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
130 |
+
[10]4.3749,[11]4.0626,[12]4.3081,[13]4.6410,[14]4.8878,[15]5.0294,[16]5.2433,[17]5.4254,[18]5.5530,[19]5.6628,
|
131 |
+
save_imatrix: stored collected data after 20 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
132 |
+
[20]5.4039,[21]5.4162,[22]5.3538,[23]5.3802,[24]5.3051,[25]5.4374,[26]5.3313,[27]5.4499,[28]5.3161,[29]5.0592,
|
133 |
+
save_imatrix: stored collected data after 30 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
134 |
+
[30]4.8366,[31]4.7855,[32]4.7328,[33]4.6131,[34]4.4173,[35]4.2519,[36]4.2044,[37]4.1553,[38]4.1683,[39]4.1118,
|
135 |
+
save_imatrix: stored collected data after 40 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
136 |
+
[40]4.0698,[41]4.0099,[42]3.9540,[43]3.9966,[44]4.0616,[45]4.1490,[46]4.1685,[47]4.0520,[48]3.9426,[49]3.8461,
|
137 |
+
save_imatrix: stored collected data after 50 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
138 |
+
[50]3.7519,[51]3.7617,[52]3.7385,[53]3.8232,[54]3.8956,[55]3.9832,[56]3.9474,[57]3.9662,[58]3.9917,[59]4.0548,
|
139 |
+
save_imatrix: stored collected data after 60 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
140 |
+
[60]4.1186,[61]4.1814,[62]4.2280,[63]4.2580,[64]4.2944,[65]4.3234,[66]4.3207,[67]4.3274,[68]4.3326,[69]4.3722,
|
141 |
+
save_imatrix: stored collected data after 70 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
142 |
+
[70]4.3903,[71]4.3980,[72]4.4266,[73]4.4352,[74]4.4371,[75]4.4443,[76]4.4506,[77]4.4644,[78]4.4901,[79]4.4807,
|
143 |
+
save_imatrix: stored collected data after 80 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
144 |
+
[80]4.5037,[81]4.5024,[82]4.5086,[83]4.5045,[84]4.5093,[85]4.5071,[86]4.5072,[87]4.4979,[88]4.5244,[89]4.5483,
|
145 |
+
save_imatrix: stored collected data after 90 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
146 |
+
[90]4.5559,[91]4.5866,[92]4.6173,[93]4.5939,[94]4.5951,[95]4.5810,[96]4.6027,[97]4.6223,[98]4.6212,[99]4.5856,
|
147 |
+
save_imatrix: stored collected data after 100 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
148 |
+
[100]4.5503,[101]4.5139,[102]4.4777,[103]4.4426,[104]4.4117,[105]4.3791,[106]4.3464,[107]4.3162,[108]4.2935,[109]4.3083,
|
149 |
+
save_imatrix: stored collected data after 110 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
150 |
+
[110]4.3381,[111]4.3819,[112]4.4259,[113]4.4635,[114]4.5322,[115]4.5670,[116]4.5901,[117]4.5989,[118]4.6225,[119]4.6201,
|
151 |
+
save_imatrix: stored collected data after 120 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
152 |
+
[120]4.5911,[121]4.5398,[122]4.4909,[123]4.5192,[124]4.5508,[125]4.5550,[126]4.5606,[127]4.5730,[128]4.5988,[129]4.6047,
|
153 |
+
save_imatrix: stored collected data after 130 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
154 |
+
[130]4.6171,[131]4.6390,[132]4.6376,[133]4.6276,[134]4.5805,[135]4.5325,[136]4.5336,[137]4.4897,[138]4.4510,[139]4.4089,
|
155 |
+
save_imatrix: stored collected data after 139 chunks in DeepSeek-Coder-V2-Instruct-IMat-GGUF/imatrix.dat
|
156 |
+
|
157 |
+
llama_print_timings: load time = 382279.94 ms
|
158 |
+
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
159 |
+
llama_print_timings: prompt eval time = 29899992.31 ms / 71168 tokens ( 420.13 ms per token, 2.38 tokens per second)
|
160 |
+
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
161 |
+
llama_print_timings: total time = 30105986.13 ms / 71169 tokens
|
162 |
+
|
163 |
+
Final estimate: PPL = 4.4089 +/- 0.05371
|