legraphista
commited on
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +140 -0
imatrix.log
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama_model_loader: loaded meta data with 23 key-value pairs and 291 tensors from RoLlama3-8b-Instruct-IMat-GGUF/RoLlama3-8b-Instruct.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
|
2 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
3 |
+
llama_model_loader: - kv 0: general.architecture str = llama
|
4 |
+
llama_model_loader: - kv 1: general.name str = RoLlama3-8b-Instruct
|
5 |
+
llama_model_loader: - kv 2: llama.block_count u32 = 32
|
6 |
+
llama_model_loader: - kv 3: llama.context_length u32 = 8192
|
7 |
+
llama_model_loader: - kv 4: llama.embedding_length u32 = 4096
|
8 |
+
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
|
9 |
+
llama_model_loader: - kv 6: llama.attention.head_count u32 = 32
|
10 |
+
llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8
|
11 |
+
llama_model_loader: - kv 8: llama.rope.freq_base f32 = 500000.000000
|
12 |
+
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
|
13 |
+
llama_model_loader: - kv 10: general.file_type u32 = 7
|
14 |
+
llama_model_loader: - kv 11: llama.vocab_size u32 = 128256
|
15 |
+
llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
|
16 |
+
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
|
17 |
+
llama_model_loader: - kv 14: tokenizer.ggml.pre str = llama-bpe
|
18 |
+
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
|
19 |
+
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
20 |
+
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
|
21 |
+
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 128000
|
22 |
+
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 128009
|
23 |
+
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 128009
|
24 |
+
llama_model_loader: - kv 21: tokenizer.chat_template str = {% set system_message = 'Ești un asi...
|
25 |
+
llama_model_loader: - kv 22: general.quantization_version u32 = 2
|
26 |
+
llama_model_loader: - type f32: 65 tensors
|
27 |
+
llama_model_loader: - type q8_0: 226 tensors
|
28 |
+
llm_load_vocab: special tokens cache size = 256
|
29 |
+
llm_load_vocab: token to piece cache size = 0.8000 MB
|
30 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
31 |
+
llm_load_print_meta: arch = llama
|
32 |
+
llm_load_print_meta: vocab type = BPE
|
33 |
+
llm_load_print_meta: n_vocab = 128256
|
34 |
+
llm_load_print_meta: n_merges = 280147
|
35 |
+
llm_load_print_meta: n_ctx_train = 8192
|
36 |
+
llm_load_print_meta: n_embd = 4096
|
37 |
+
llm_load_print_meta: n_head = 32
|
38 |
+
llm_load_print_meta: n_head_kv = 8
|
39 |
+
llm_load_print_meta: n_layer = 32
|
40 |
+
llm_load_print_meta: n_rot = 128
|
41 |
+
llm_load_print_meta: n_embd_head_k = 128
|
42 |
+
llm_load_print_meta: n_embd_head_v = 128
|
43 |
+
llm_load_print_meta: n_gqa = 4
|
44 |
+
llm_load_print_meta: n_embd_k_gqa = 1024
|
45 |
+
llm_load_print_meta: n_embd_v_gqa = 1024
|
46 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
47 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
48 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
49 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
50 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
51 |
+
llm_load_print_meta: n_ff = 14336
|
52 |
+
llm_load_print_meta: n_expert = 0
|
53 |
+
llm_load_print_meta: n_expert_used = 0
|
54 |
+
llm_load_print_meta: causal attn = 1
|
55 |
+
llm_load_print_meta: pooling type = 0
|
56 |
+
llm_load_print_meta: rope type = 0
|
57 |
+
llm_load_print_meta: rope scaling = linear
|
58 |
+
llm_load_print_meta: freq_base_train = 500000.0
|
59 |
+
llm_load_print_meta: freq_scale_train = 1
|
60 |
+
llm_load_print_meta: n_ctx_orig_yarn = 8192
|
61 |
+
llm_load_print_meta: rope_finetuned = unknown
|
62 |
+
llm_load_print_meta: ssm_d_conv = 0
|
63 |
+
llm_load_print_meta: ssm_d_inner = 0
|
64 |
+
llm_load_print_meta: ssm_d_state = 0
|
65 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
66 |
+
llm_load_print_meta: model type = 8B
|
67 |
+
llm_load_print_meta: model ftype = Q8_0
|
68 |
+
llm_load_print_meta: model params = 8.03 B
|
69 |
+
llm_load_print_meta: model size = 7.95 GiB (8.50 BPW)
|
70 |
+
llm_load_print_meta: general.name = RoLlama3-8b-Instruct
|
71 |
+
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
|
72 |
+
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
|
73 |
+
llm_load_print_meta: PAD token = 128009 '<|eot_id|>'
|
74 |
+
llm_load_print_meta: LF token = 128 'Ä'
|
75 |
+
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
|
76 |
+
llm_load_print_meta: max token length = 256
|
77 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
78 |
+
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
|
79 |
+
ggml_cuda_init: found 1 CUDA devices:
|
80 |
+
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
|
81 |
+
llm_load_tensors: ggml ctx size = 0.30 MiB
|
82 |
+
llm_load_tensors: offloading 32 repeating layers to GPU
|
83 |
+
llm_load_tensors: offloading non-repeating layers to GPU
|
84 |
+
llm_load_tensors: offloaded 33/33 layers to GPU
|
85 |
+
llm_load_tensors: CPU buffer size = 532.31 MiB
|
86 |
+
llm_load_tensors: CUDA0 buffer size = 7605.33 MiB
|
87 |
+
.........................................................................................
|
88 |
+
llama_new_context_with_model: n_ctx = 512
|
89 |
+
llama_new_context_with_model: n_batch = 512
|
90 |
+
llama_new_context_with_model: n_ubatch = 512
|
91 |
+
llama_new_context_with_model: flash_attn = 0
|
92 |
+
llama_new_context_with_model: freq_base = 500000.0
|
93 |
+
llama_new_context_with_model: freq_scale = 1
|
94 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 64.00 MiB
|
95 |
+
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
|
96 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB
|
97 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 258.50 MiB
|
98 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
|
99 |
+
llama_new_context_with_model: graph nodes = 1030
|
100 |
+
llama_new_context_with_model: graph splits = 2
|
101 |
+
|
102 |
+
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
103 |
+
compute_imatrix: tokenizing the input ..
|
104 |
+
compute_imatrix: tokenization took 41.879 ms
|
105 |
+
compute_imatrix: computing over 125 chunks with batch_size 512
|
106 |
+
compute_imatrix: 0.73 seconds per pass - ETA 1.52 minutes
|
107 |
+
[1]5.3197,[2]4.1203,[3]3.7466,[4]4.6688,[5]4.7522,[6]4.0511,[7]4.3325,[8]4.7194,[9]4.9221,
|
108 |
+
save_imatrix: stored collected data after 10 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
109 |
+
[10]4.5371,[11]4.9454,[12]5.3936,[13]5.7982,[14]6.1836,[15]6.4117,[16]6.6886,[17]6.8575,[18]6.6066,[19]6.3120,
|
110 |
+
save_imatrix: stored collected data after 20 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
111 |
+
[20]6.3036,[21]6.4335,[22]6.3724,[23]6.6187,[24]6.5874,[25]6.8862,[26]6.8678,[27]6.6280,[28]6.5552,[29]6.5581,
|
112 |
+
save_imatrix: stored collected data after 30 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
113 |
+
[30]6.5409,[31]6.2219,[32]5.9307,[33]5.8011,[34]5.7020,[35]5.7571,[36]5.8205,[37]5.7797,[38]5.8361,[39]5.9567,
|
114 |
+
save_imatrix: stored collected data after 40 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
115 |
+
[40]6.0255,[41]5.9107,[42]5.7491,[43]5.7262,[44]5.6353,[45]5.6632,[46]5.5978,[47]5.7036,[48]5.7899,[49]5.8828,
|
116 |
+
save_imatrix: stored collected data after 50 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
117 |
+
[50]5.8221,[51]5.9057,[52]6.0108,[53]6.0854,[54]6.1489,[55]6.2118,[56]6.2579,[57]6.3263,[58]6.3467,[59]6.3636,
|
118 |
+
save_imatrix: stored collected data after 60 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
119 |
+
[60]6.3386,[61]6.3349,[62]6.3772,[63]6.4250,[64]6.3709,[65]6.3589,[66]6.3773,[67]6.3664,[68]6.3711,[69]6.3702,
|
120 |
+
save_imatrix: stored collected data after 70 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
121 |
+
[70]6.3837,[71]6.3912,[72]6.4015,[73]6.3856,[74]6.3523,[75]6.3589,[76]6.3727,[77]6.3558,[78]6.3552,[79]6.3900,
|
122 |
+
save_imatrix: stored collected data after 80 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
123 |
+
[80]6.4211,[81]6.4179,[82]6.4221,[83]6.4511,[84]6.3773,[85]6.3770,[86]6.3915,[87]6.4025,[88]6.4275,[89]6.4389,
|
124 |
+
save_imatrix: stored collected data after 90 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
125 |
+
[90]6.3974,[91]6.3435,[92]6.2970,[93]6.2533,[94]6.2075,[95]6.1652,[96]6.1383,[97]6.1492,[98]6.1894,[99]6.2637,
|
126 |
+
save_imatrix: stored collected data after 100 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
127 |
+
[100]6.3332,[101]6.3741,[102]6.4802,[103]6.5092,[104]6.5449,[105]6.4910,[106]6.5028,[107]6.4773,[108]6.4371,[109]6.3888,
|
128 |
+
save_imatrix: stored collected data after 110 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
129 |
+
[110]6.4299,[111]6.4773,[112]6.4889,[113]6.4877,[114]6.5176,[115]6.5522,[116]6.5670,[117]6.5873,[118]6.6148,[119]6.5830,
|
130 |
+
save_imatrix: stored collected data after 120 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
131 |
+
[120]6.5531,[121]6.5227,[122]6.5207,[123]6.5083,[124]6.5082,[125]6.4824,
|
132 |
+
save_imatrix: stored collected data after 125 chunks in RoLlama3-8b-Instruct-IMat-GGUF/imatrix.dat
|
133 |
+
|
134 |
+
llama_print_timings: load time = 9645.06 ms
|
135 |
+
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
136 |
+
llama_print_timings: prompt eval time = 78767.49 ms / 64000 tokens ( 1.23 ms per token, 812.52 tokens per second)
|
137 |
+
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
138 |
+
llama_print_timings: total time = 88484.18 ms / 64001 tokens
|
139 |
+
|
140 |
+
Final estimate: PPL = 6.4824 +/- 0.08632
|