leumastai commited on
Commit
2aa3b32
·
1 Parent(s): 3216e65

Thrid Commit RLModel with Stablebaselines

Browse files
LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2c4469b0e7a9e6ca853b2543d1e587031d3cabb84701dc9d44071153d219ba9
3
+ size 144003
LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc5e86fd170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc5e86fd200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc5e86fd290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc5e86fd320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc5e86fd3b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc5e86fd440>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc5e86fd4d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc5e86fd560>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc5e86fd5f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc5e86fd680>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc5e86fd710>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc5e873dde0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652195312.9410136,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA3rKT5bZrY+dbX6vhyNvb7SLOO9FHE8vgAAAAAAAAAAAAujPG6cmz8jJIE9egAOv4FmVjxSXw89AAAAAAAAAAAaasE9zER6PzQSLT4y4RO/OCjwPYWXDb0AAAAAAAAAABpqH724a8i7beZsvCVGMj3/ujc9o+URvgAAgD8AAIA/M5j3vBSM6rpyzp262o+iPGyRNjwkAIy9AACAPwAAgD8ze049/PGqPqi+iL3S4Z++5lgqvIOaDT0AAAAAAAAAALO2Ob2egpU/Dxkcvkdr974ALua9Fk/xvQAAAAAAAAAAzZjyPNzVNLypNqO9LXttPR+TQj3FUu68AACAPwAAgD8zmOI8e//3vJCJxr21UpW9Yz1KPILG2D0AAIA/AACAP3g/i77lHbI/MjoVvz6V975NQuq+hkVOvgAAAAAAAAAAMw4cPs/LKj8wImq9OS/jvi9aLz4pTQC+AAAAAAAAAAA6iAC+NKMaP3KL3D3xreC+pb11vSEbjz0AAAAAAAAAAJNhDb4a1bo/b/ESv6bPPL4/TlG+CLW5vgAAAAAAAAAAbT4LPpndMT+MbaC75VDjvs8eIj6GiBy+AAAAAAAAAAAgl00+16JfP4pjZj6lu/++NSCOPvK9Kb0AAAAAAAAAAIDgcD0FNPe7MOJRu/UtujwsYVu9vheaPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9Q63Q8OXc0CUhpRSlIwBbJRLzYwBdJRHQK6h6twrDqJ1fZQoaAZoCWgPQwhuwVJdwHBvQJSGlFKUaBVL6mgWR0CuofoSL61tdX2UKGgGaAloD0MIg79fzBaib0CUhpRSlGgVS+loFkdArqH+hGpdbHV9lChoBmgJaA9DCBKHbCAdvXFAlIaUUpRoFUvSaBZHQK6iScy31Bd1fZQoaAZoCWgPQwhXPsvzYHBvQJSGlFKUaBVL+mgWR0CuomwXhwVCdX2UKGgGaAloD0MISu6wiQwncECUhpRSlGgVS99oFkdArqL4t8NQTHV9lChoBmgJaA9DCBVwz/Nnr3NAlIaUUpRoFUvbaBZHQK6jDmPHT7V1fZQoaAZoCWgPQwh7FK5H4WBzQJSGlFKUaBVL4WgWR0Cuow7Q1JlKdX2UKGgGaAloD0MIXMzPDY2rckCUhpRSlGgVS/JoFkdArqNKh+OOsHV9lChoBmgJaA9DCKCLhozHPXNAlIaUUpRoFUvzaBZHQK6jybsniNt1fZQoaAZoCWgPQwjG+3H7ZQpyQJSGlFKUaBVL1GgWR0Cuo/6+WWyDdX2UKGgGaAloD0MIr1sExnoEcUCUhpRSlGgVS/loFkdArqRPjABT43V9lChoBmgJaA9DCNXNxd/2pnJAlIaUUpRoFUvgaBZHQK6k/nbItDl1fZQoaAZoCWgPQwgArmTHRvByQJSGlFKUaBVNPgJoFkdArqYZsCT2WnV9lChoBmgJaA9DCP5itmQV5XFAlIaUUpRoFUvKaBZHQK6mJfDUExJ1fZQoaAZoCWgPQwi4dTdP9UVyQJSGlFKUaBVL7WgWR0CuplcOTaCddX2UKGgGaAloD0MIHlN3ZZfEc0CUhpRSlGgVTQIBaBZHQK6mZgx8D0V1fZQoaAZoCWgPQwjC/BUy14txQJSGlFKUaBVL+GgWR0Cupo3BYV7AdX2UKGgGaAloD0MIFxBaD58xckCUhpRSlGgVS/NoFkdArqbIPd2xIXV9lChoBmgJaA9DCHv6CPzh7HBAlIaUUpRoFU0WAWgWR0Cupwl4LThHdX2UKGgGaAloD0MIucMmMvPlckCUhpRSlGgVS+BoFkdArqcvQ0GeMHV9lChoBmgJaA9DCCcXY2CdhnFAlIaUUpRoFUvaaBZHQK6nT7CzkZJ1fZQoaAZoCWgPQwg/xXHglbBxQJSGlFKUaBVNCQFoFkdArqfYKfFrEnV9lChoBmgJaA9DCLJ/ngYM3nJAlIaUUpRoFUviaBZHQK6ojW7voeR1fZQoaAZoCWgPQwgKZeHrK3lxQJSGlFKUaBVNAgFoFkdArqjZh4MWoHV9lChoBmgJaA9DCB2vQPTkG3FAlIaUUpRoFU0ZAWgWR0CuqRQEIPbxdX2UKGgGaAloD0MIZYwPsxesbUCUhpRSlGgVS9loFkdArqkZNZeRgnV9lChoBmgJaA9DCH7ja8/sanBAlIaUUpRoFUvTaBZHQK6qUy9mHxl1fZQoaAZoCWgPQwiutmJ/2T5xQJSGlFKUaBVL7GgWR0CuqpnM+u/2dX2UKGgGaAloD0MIJxWNtb8gcUCUhpRSlGgVS8RoFkdArqrRxBE8aHV9lChoBmgJaA9DCGVtUzxuFXNAlIaUUpRoFUvpaBZHQK6q3Z7HAAR1fZQoaAZoCWgPQwjzdRn+UzJyQJSGlFKUaBVL+mgWR0CuqvEwN9YwdX2UKGgGaAloD0MIDeGYZQ/IcECUhpRSlGgVS+ZoFkdArqr59qk/KXV9lChoBmgJaA9DCNtN8E2Tx3JAlIaUUpRoFUvZaBZHQK6q9TkQwsZ1fZQoaAZoCWgPQwi/R/31CuZxQJSGlFKUaBVL1WgWR0Cuq0Twc5sCdX2UKGgGaAloD0MIaQBvgcSmc0CUhpRSlGgVS+1oFkdArqvWUUwi7nV9lChoBmgJaA9DCL5qZcKv3XFAlIaUUpRoFUvSaBZHQK6r4btJFsp1fZQoaAZoCWgPQwhntFVJZO1XQJSGlFKUaBVN6ANoFkdArqv2iQDFInV9lChoBmgJaA9DCHSXxFnRpnJAlIaUUpRoFUvZaBZHQK6snwiJO351fZQoaAZoCWgPQwhDqb2I9p9wQJSGlFKUaBVLzmgWR0CurOtBOYY0dX2UKGgGaAloD0MI8djPYim/b0CUhpRSlGgVS+BoFkdArq0DqKP4mHV9lChoBmgJaA9DCGebG9OT425AlIaUUpRoFUvcaBZHQK6tI/5ckdF1fZQoaAZoCWgPQwik/+VatCFUQJSGlFKUaBVLu2gWR0CureZeZ5RkdX2UKGgGaAloD0MIyHxAoDOYc0CUhpRSlGgVS81oFkdArq6KbnX/YXV9lChoBmgJaA9DCO87hsd+e3FAlIaUUpRoFU0AAWgWR0CurwEXtShrdX2UKGgGaAloD0MIxTpVvufec0CUhpRSlGgVS9FoFkdArq8GoaUA1nV9lChoBmgJaA9DCJJAg03dDHFAlIaUUpRoFUvsaBZHQK6vD52Qnx91fZQoaAZoCWgPQwhUck7sISltQJSGlFKUaBVNBQFoFkdArq+Qb6xgRnV9lChoBmgJaA9DCLxbWaKzDnNAlIaUUpRoFU0AAWgWR0Cur48+iaiLdX2UKGgGaAloD0MILUDbalakcUCUhpRSlGgVTQkBaBZHQK6vvAUL2Ht1fZQoaAZoCWgPQwi/mC1ZFZlwQJSGlFKUaBVL5WgWR0Cur/5zxPO6dX2UKGgGaAloD0MId7rzxHPpcECUhpRSlGgVS+ZoFkdArrAWALApKHV9lChoBmgJaA9DCLJnz2XqIXNAlIaUUpRoFUvvaBZHQK6wIGbkOqh1fZQoaAZoCWgPQwhpxw2/m4hwQJSGlFKUaBVL7GgWR0CusOQ4CIUKdX2UKGgGaAloD0MItoZSe5FVcUCUhpRSlGgVS91oFkdArrEj212JSHV9lChoBmgJaA9DCKLxRBAno3JAlIaUUpRoFUvuaBZHQK6xT7MPjGV1fZQoaAZoCWgPQwj0biwojLhvQJSGlFKUaBVL6WgWR0CusiKk/KQrdX2UKGgGaAloD0MI3LdaJ66gcUCUhpRSlGgVS8hoFkdArrKZpFkQPXV9lChoBmgJaA9DCA8MIHyo73JAlIaUUpRoFUvjaBZHQK6yssZpBX11fZQoaAZoCWgPQwh2wHXFTABwQJSGlFKUaBVL9WgWR0Cus4wIUrTZdX2UKGgGaAloD0MIXW4w1CHhcUCUhpRSlGgVS9ZoFkdArrOEWZZ0S3V9lChoBmgJaA9DCIaRXtQueHBAlIaUUpRoFUv5aBZHQK6zrN5dGAl1fZQoaAZoCWgPQwhyMQbWcctwQJSGlFKUaBVL6mgWR0Cus+mz8gp0dX2UKGgGaAloD0MI6q7sgoEGckCUhpRSlGgVS+poFkdArrQbVQQ+U3V9lChoBmgJaA9DCMsSnWVWd3BAlIaUUpRoFUvWaBZHQK60KxC6Ymd1fZQoaAZoCWgPQwgwnkFDf8lyQJSGlFKUaBVL6WgWR0CutF/6XSjQdX2UKGgGaAloD0MIn6pCA/E1c0CUhpRSlGgVTZUBaBZHQK60bM3ZPEd1fZQoaAZoCWgPQwhVMZV+Qv1xQJSGlFKUaBVL9mgWR0CutLAksz2wdX2UKGgGaAloD0MIuJIdG4GKW0CUhpRSlGgVTegDaBZHQK61k5p8F6l1fZQoaAZoCWgPQwgDXfsCOqpxQJSGlFKUaBVL+mgWR0CutZV6mfoSdX2UKGgGaAloD0MIMC3qk5zXcUCUhpRSlGgVS/xoFkdArrXVdE9dNXV9lChoBmgJaA9DCN6wbVGmOHJAlIaUUpRoFUv+aBZHQK62A8lolD51fZQoaAZoCWgPQwjfUPhsXeBxQJSGlFKUaBVL62gWR0CutniWeHzpdX2UKGgGaAloD0MI203wTVOmcUCUhpRSlGgVS9loFkdArraNqL0jDHV9lChoBmgJaA9DCL4uw3+6qXJAlIaUUpRoFUvtaBZHQK629AhStNl1fZQoaAZoCWgPQwgjumddYwZwQJSGlFKUaBVL22gWR0Cut08m8dxRdX2UKGgGaAloD0MIE7h1N4+wckCUhpRSlGgVS99oFkdArrdpZ0Syt3V9lChoBmgJaA9DCPImv0XnzXNAlIaUUpRoFUvLaBZHQK63ibNKRMh1fZQoaAZoCWgPQwiIEi15/M5xQJSGlFKUaBVL6WgWR0Cut6hw++uedX2UKGgGaAloD0MIwhcmU4VCb0CUhpRSlGgVS95oFkdArreshC+lCXV9lChoBmgJaA9DCHyd1JelcnBAlIaUUpRoFUvoaBZHQK64ABvJiiJ1fZQoaAZoCWgPQwjC+6pcqAtzQJSGlFKUaBVL5WgWR0CuuCniWE9MdX2UKGgGaAloD0MIzHoxlJNxc0CUhpRSlGgVS+VoFkdArrhmZuyeI3V9lChoBmgJaA9DCNV1qKYkcXNAlIaUUpRoFUv4aBZHQK64Z3ta6jF1fZQoaAZoCWgPQwgSE9TwbdpxQJSGlFKUaBVL3mgWR0CuuQa2nbZfdX2UKGgGaAloD0MIilbuBSYxc0CUhpRSlGgVS+9oFkdArrlIp+c6NnV9lChoBmgJaA9DCKrSFtf4dnBAlIaUUpRoFUveaBZHQK65RrBTGYN1fZQoaAZoCWgPQwieXFMgM9ZuQJSGlFKUaBVL3mgWR0CuuXNFz+3pdX2UKGgGaAloD0MIurw5XOtLcUCUhpRSlGgVS81oFkdArrmeN5t3wHV9lChoBmgJaA9DCKpFRDE5MXNAlIaUUpRoFUvhaBZHQK66AQ7LdN51fZQoaAZoCWgPQwgAx549Vw9zQJSGlFKUaBVL3WgWR0Cuula9kBjndX2UKGgGaAloD0MIFTyFXOl6cUCUhpRSlGgVS9poFkdArrqgTTOPenV9lChoBmgJaA9DCH12wHVFQXNAlIaUUpRoFUvNaBZHQK67LPszEaV1fZQoaAZoCWgPQwiOlC2S9h5xQJSGlFKUaBVL6mgWR0Cuu0QZGax5dX2UKGgGaAloD0MIt0Htt/ZMcECUhpRSlGgVS/RoFkdArrty1gH/tXV9lChoBmgJaA9DCNjSo6leGnBAlIaUUpRoFUvaaBZHQK67l8Rcu8N1fZQoaAZoCWgPQwgoSGx3zx9xQJSGlFKUaBVNFAFoFkdArru3xx1gY3V9lChoBmgJaA9DCH8yxodZFm5AlIaUUpRoFUvfaBZHQK676/B3zMB1fZQoaAZoCWgPQwhCQL6Eio1wQJSGlFKUaBVL3GgWR0Cuu+Ig/1QJdX2UKGgGaAloD0MIY5eo3pqackCUhpRSlGgVTRoBaBZHQK6779fCyhV1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 472,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
+ "n_epochs": 8,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899fbdb9bb87f250bb0132d2875bbb18c2eeb7ceeae89880becb4eceb44379e2
3
+ size 84893
LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cffa763867e25b68cc158972d16e88645b5d2ae000ff3f382d92156eec386d1f
3
+ size 43201
LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 244.83 +/- 20.74
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 273.23 +/- 17.77
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc5e86fd170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc5e86fd200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc5e86fd290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc5e86fd320>", "_build": "<function ActorCriticPolicy._build at 0x7fc5e86fd3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc5e86fd440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc5e86fd4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc5e86fd560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc5e86fd5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc5e86fd680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc5e86fd710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc5e873dde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 917504, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652192639.4706373, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAmnb3sWbS5BSBdO54SFrcU+F+7q/CBugAAgD8AAIA/TRgtPeH8kLpjQGi7WcfsN83TqbqgGxw6AACAPwAAgD9mWaS87BG9uSK7EzqRcBo06SIsuwN9K7kAAIA/AACAPzNJrb2ugaG6ZtGeOlyI+DXp/JS6+bC2uQAAgD8AAIA/5qZyPVzrcbpyS5W7xetIOA8uXLu1Oga3AACAPwAAgD8zkJg8BcLtu66noL281Cc8/Ow+PYYSDb0AAIA/AACAP4ATSj3DsRe6dCKdOo3uxDU1vpM7ali2uQAAgD8AAIA/ZuyOPCm0I7oje+U6ZspztRURm7v6ZQW6AACAPwAAgD9N8Dy9tiuUPmsxDz5Q2pS+38pRvC7ctLsAAAAAAAAAANOAez6l84w/CqtSPlDMp75kvGw+5ZLDuwAAAAAAAAAAjXeCveH4hbotmv+5vO5uNdZHnDo7edm0AACAPwAAgD+NbJW9j/5HulKCAb5JKzG+KQxPPEQ1L70AAAAAAAAAADOv5Lx7tpW6CjCBu6YhkbVM8/g55E6VOgAAgD8AAIA/5g4gPa4trbry5Z46L/eXNQyHOTpK9bW5AACAPwAAgD9zV/+9j4JauinvgTpz03Y1HZFwu4l6l7kAAIA/AACAP7NIJj4swek+mwDsvTFRUr6emxo7FAHCPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.01944888888888885, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInbmHhO9FYUCUhpRSlIwBbJRN6AOMAXSUR0CR74iGnGbTdX2UKGgGaAloD0MIHch6avXzWkCUhpRSlGgVTegDaBZHQJH2a2MKkVN1fZQoaAZoCWgPQwgjFFtBU4FgQJSGlFKUaBVN6ANoFkdAkfedQj2SMnV9lChoBmgJaA9DCAFPWris82FAlIaUUpRoFU3oA2gWR0CR+cqveP7vdX2UKGgGaAloD0MILCl3n+ODY0CUhpRSlGgVTegDaBZHQJH9mrp7kXF1fZQoaAZoCWgPQwhCB13CIfBiQJSGlFKUaBVN6ANoFkdAkgWASJ0nxHV9lChoBmgJaA9DCILF4cyvU2JAlIaUUpRoFU3oA2gWR0CSDE9iMHbAdX2UKGgGaAloD0MINnaJ6i2oZECUhpRSlGgVTegDaBZHQJIMfPHDJlt1fZQoaAZoCWgPQwjaHVIMkGheQJSGlFKUaBVN6ANoFkdAkg5dAs052nV9lChoBmgJaA9DCJUtknajU2NAlIaUUpRoFU3oA2gWR0CSJ9+bExZddX2UKGgGaAloD0MI/MbXntnQZ0CUhpRSlGgVTegDaBZHQJIq/PyCnP51fZQoaAZoCWgPQwg4hCo1+xBkQJSGlFKUaBVN6ANoFkdAkjFdO/L1VnV9lChoBmgJaA9DCJUsJ6H0zWBAlIaUUpRoFU3oA2gWR0CSNJEWZZ0TdX2UKGgGaAloD0MIXcDLDBsMZECUhpRSlGgVTegDaBZHQJI2bTtsvZh1fZQoaAZoCWgPQwjRBfUt8xtjQJSGlFKUaBVN6ANoFkdAkjgI0Q9RrXV9lChoBmgJaA9DCEFiu3uAil5AlIaUUpRoFU3oA2gWR0CSOU4k/r0KdX2UKGgGaAloD0MIwJfCg2bmYECUhpRSlGgVTegDaBZHQJI8hRjz7Mx1fZQoaAZoCWgPQwgAb4EERTlgQJSGlFKUaBVN6ANoFkdAkkP9ELH+63V9lChoBmgJaA9DCB6LbVJR8GBAlIaUUpRoFU3oA2gWR0CSRUlrdnCgdX2UKGgGaAloD0MIuYswRbl2V0CUhpRSlGgVTegDaBZHQJJHiPU8V591fZQoaAZoCWgPQwhnfcoxWRwmQJSGlFKUaBVL7mgWR0CSSsRs/IKddX2UKGgGaAloD0MIX5Z2ai7fYUCUhpRSlGgVTegDaBZHQJJLVcX3xnZ1fZQoaAZoCWgPQwgr2hznNjNhQJSGlFKUaBVN6ANoFkdAklMJJCjUNXV9lChoBmgJaA9DCPm/IypUO11AlIaUUpRoFU3oA2gWR0CSWg8TzunddX2UKGgGaAloD0MIvaqzWmB1W0CUhpRSlGgVTegDaBZHQJJaQNDtw711fZQoaAZoCWgPQwgrMc9KWoJYQJSGlFKUaBVN6ANoFkdAklw8DSw4bXV9lChoBmgJaA9DCGHFqdZCaGZAlIaUUpRoFU3oA2gWR0CSeLlLvkR0dX2UKGgGaAloD0MId/aVB+nwYECUhpRSlGgVTegDaBZHQJJ79e0G/vh1fZQoaAZoCWgPQwhz8iIT8AxhQJSGlFKUaBVN6ANoFkdAkoKMh9srNHV9lChoBmgJaA9DCP36ITbYimFAlIaUUpRoFU3oA2gWR0CShchiLEUCdX2UKGgGaAloD0MIaaz9nW0qYUCUhpRSlGgVTegDaBZHQJKHwZ0jkdV1fZQoaAZoCWgPQwh6xr5k48lbQJSGlFKUaBVN6ANoFkdAkolp4B3iaXV9lChoBmgJaA9DCIuKOJ3k2GJAlIaUUpRoFU3oA2gWR0CSyZwF1SwXdX2UKGgGaAloD0MIQ1iNJSxIZ0CUhpRSlGgVTegDaBZHQJLQu0UoKD11fZQoaAZoCWgPQwgHRIgr521kQJSGlFKUaBVN6ANoFkdAktHvqoqCpXV9lChoBmgJaA9DCAYP0765gGNAlIaUUpRoFU3oA2gWR0CS1D1ie/YbdX2UKGgGaAloD0MIzosTX21rYECUhpRSlGgVTegDaBZHQJLXoj6eoUB1fZQoaAZoCWgPQwgfZFkwcVhgQJSGlFKUaBVN6ANoFkdAktg9xAB1cXV9lChoBmgJaA9DCKmDvB5ME2RAlIaUUpRoFU3oA2gWR0CS35NbC79RdX2UKGgGaAloD0MIt2EUBI/oY0CUhpRSlGgVTegDaBZHQJLmEXWOIZZ1fZQoaAZoCWgPQwiDMo0mFyBkQJSGlFKUaBVN6ANoFkdAkuY8i4axYHV9lChoBmgJaA9DCERSCyWTOV5AlIaUUpRoFU3oA2gWR0CS6BAxzq8ldX2UKGgGaAloD0MIcQSpFDtsZECUhpRSlGgVTegDaBZHQJMDB7HAAQx1fZQoaAZoCWgPQwj67laW6BhjQJSGlFKUaBVN6ANoFkdAkwY62rn1WnV9lChoBmgJaA9DCEF9y5wuaWFAlIaUUpRoFU3oA2gWR0CTDL2+PBBSdX2UKGgGaAloD0MI2AsFbIdYZ0CUhpRSlGgVTegDaBZHQJMP4TYdyT91fZQoaAZoCWgPQwgt7GmHPxxhQJSGlFKUaBVN6ANoFkdAkxJZng5zYHV9lChoBmgJaA9DCAkZyLPLGF5AlIaUUpRoFU3oA2gWR0CTFLhl18sudX2UKGgGaAloD0MIIXam0PnfYECUhpRSlGgVTegDaBZHQJMaYPEsJ6Z1fZQoaAZoCWgPQwgcJ4V5D1xhQJSGlFKUaBVN6ANoFkdAkyG9l/Yra3V9lChoBmgJaA9DCJyIfm39mVxAlIaUUpRoFU3oA2gWR0CTIv11W8yvdX2UKGgGaAloD0MIXtkFg2s1Z0CUhpRSlGgVTegDaBZHQJMlaRV6u4h1fZQoaAZoCWgPQwjbMXVX9rRlQJSGlFKUaBVN6ANoFkdAkyjqWom5UnV9lChoBmgJaA9DCAAapUv/c15AlIaUUpRoFU3oA2gWR0CTKYLn9vS/dX2UKGgGaAloD0MIkKSkhyGvYkCUhpRSlGgVTegDaBZHQJMxJ4bCJoF1fZQoaAZoCWgPQwj8HB8tToFlQJSGlFKUaBVN6ANoFkdAkzfYjGDL83V9lChoBmgJaA9DCI0lrI0xDWFAlIaUUpRoFU3oA2gWR0CTOAXoTwlTdX2UKGgGaAloD0MIeXb51gf7YUCUhpRSlGgVTegDaBZHQJM57QSi/PB1fZQoaAZoCWgPQwgTmiSWlBsIQJSGlFKUaBVNEwFoFkdAkz2TKYAsCnV9lChoBmgJaA9DCN4E3zT9RnBAlIaUUpRoFU1YAmgWR0CTTyS1maphdX2UKGgGaAloD0MI6rEtA87hYUCUhpRSlGgVTegDaBZHQJNTjRplBhR1fZQoaAZoCWgPQwj3ArNCEVdmQJSGlFKUaBVN6ANoFkdAk1aCjL0SRXV9lChoBmgJaA9DCGmQgqeQTWJAlIaUUpRoFU3oA2gWR0CTXLJpnHvMdX2UKGgGaAloD0MI3bbvUX/OX0CUhpRSlGgVTegDaBZHQJNfxalk6Lh1fZQoaAZoCWgPQwjlDMUdb5hiQJSGlFKUaBVN6ANoFkdAk2GYLkS26XV9lChoBmgJaA9DCBd+cD51Ql1AlIaUUpRoFU3oA2gWR0CTYzmR/3FldX2UKGgGaAloD0MINqs+V9s0ZUCUhpRSlGgVTegDaBZHQJNnjTWoWHl1fZQoaAZoCWgPQwjesG1R5n9iQJSGlFKUaBVN6ANoFkdAk6uijk+5fHV9lChoBmgJaA9DCKBrX0CviWRAlIaUUpRoFU3oA2gWR0CTrgYHPeHjdX2UKGgGaAloD0MINJwyN98STUCUhpRSlGgVS9ZoFkdAk66N/rjYI3V9lChoBmgJaA9DCH5wPnWs0mdAlIaUUpRoFU3oA2gWR0CTsXqYJE6UdX2UKGgGaAloD0MIcVga+FHoYUCUhpRSlGgVTegDaBZHQJO6Cp71Iy11fZQoaAZoCWgPQwhFgT6Rp9thQJSGlFKUaBVN6ANoFkdAk8D9LpRoAXV9lChoBmgJaA9DCEkrvqFw1WFAlIaUUpRoFU3oA2gWR0CTwTBtk4FSdX2UKGgGaAloD0MI1LZhFIRXYUCUhpRSlGgVTegDaBZHQJPC+pT/ACZ1fZQoaAZoCWgPQwgraFpi5WpgQJSGlFKUaBVN6ANoFkdAk8aYB3iaRnV9lChoBmgJaA9DCMcpOpLL4UhAlIaUUpRoFUvqaBZHQJPUh21UlzF1fZQoaAZoCWgPQwgP7WMFP8JkQJSGlFKUaBVN6ANoFkdAk9fHGXHBDXV9lChoBmgJaA9DCKa0/pYAjmNAlIaUUpRoFU3oA2gWR0CT3BXgLqlhdX2UKGgGaAloD0MIm+Ydp+hIZUCUhpRSlGgVTegDaBZHQJPe8HlfZ291fZQoaAZoCWgPQwj9oC5SqOBhQJSGlFKUaBVN6ANoFkdAk+SRO+IuXnV9lChoBmgJaA9DCJnyIagai2JAlIaUUpRoFU3oA2gWR0CT52FPBSDRdX2UKGgGaAloD0MIDrvvGJ5yZ0CUhpRSlGgVTegDaBZHQJPpGukk8ih1fZQoaAZoCWgPQwh06spn+UNjQJSGlFKUaBVN6ANoFkdAk+9PS6UaAHV9lChoBmgJaA9DCK8+HvruzmNAlIaUUpRoFU3oA2gWR0CT+DMA3kxRdX2UKGgGaAloD0MIxEMYPw3ZYECUhpRSlGgVTegDaBZHQJP61SYPXkJ1fZQoaAZoCWgPQwgMO4xJf4JfQJSGlFKUaBVN6ANoFkdAk/tbxiG34XV9lChoBmgJaA9DCLDKhco/W2NAlIaUUpRoFU3oA2gWR0CT/lhN/OMVdX2UKGgGaAloD0MIpIl3gKdwZECUhpRSlGgVTegDaBZHQJQHF6po9LZ1fZQoaAZoCWgPQwhUjzS4LaBkQJSGlFKUaBVN6ANoFkdAlA5NCNS62HV9lChoBmgJaA9DCMnk1M4wD2FAlIaUUpRoFU3oA2gWR0CUDoPTG5tndX2UKGgGaAloD0MI0sQ7wJPYYUCUhpRSlGgVTegDaBZHQJQUrp8neBR1fZQoaAZoCWgPQwia7J+ngdxkQJSGlFKUaBVN6ANoFkdAlCS6GlANX3V9lChoBmgJaA9DCOz4LxCEv2NAlIaUUpRoFU3oA2gWR0CUKC5NXYDldX2UKGgGaAloD0MIogp/hjeoXkCUhpRSlGgVTegDaBZHQJQsgh5gPVd1fZQoaAZoCWgPQwjwiArVTQFjQJSGlFKUaBVN6ANoFkdAlC92U0Nz83V9lChoBmgJaA9DCClf0EICYGNAlIaUUpRoFU3oA2gWR0CUNVZrHlwMdX2UKGgGaAloD0MIAHUDBd4uZUCUhpRSlGgVTegDaBZHQJQ4ZNM495h1fZQoaAZoCWgPQwg9RKM7CE5iQJSGlFKUaBVN6ANoFkdAlDogQtjCpHV9lChoBmgJaA9DCMCV7NiIFGRAlIaUUpRoFU3oA2gWR0CUQDqeK8+SdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 224, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc5e86fd170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc5e86fd200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc5e86fd290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc5e86fd320>", "_build": "<function ActorCriticPolicy._build at 0x7fc5e86fd3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc5e86fd440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc5e86fd4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc5e86fd560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc5e86fd5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc5e86fd680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc5e86fd710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc5e873dde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652195312.9410136, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA3rKT5bZrY+dbX6vhyNvb7SLOO9FHE8vgAAAAAAAAAAAAujPG6cmz8jJIE9egAOv4FmVjxSXw89AAAAAAAAAAAaasE9zER6PzQSLT4y4RO/OCjwPYWXDb0AAAAAAAAAABpqH724a8i7beZsvCVGMj3/ujc9o+URvgAAgD8AAIA/M5j3vBSM6rpyzp262o+iPGyRNjwkAIy9AACAPwAAgD8ze049/PGqPqi+iL3S4Z++5lgqvIOaDT0AAAAAAAAAALO2Ob2egpU/Dxkcvkdr974ALua9Fk/xvQAAAAAAAAAAzZjyPNzVNLypNqO9LXttPR+TQj3FUu68AACAPwAAgD8zmOI8e//3vJCJxr21UpW9Yz1KPILG2D0AAIA/AACAP3g/i77lHbI/MjoVvz6V975NQuq+hkVOvgAAAAAAAAAAMw4cPs/LKj8wImq9OS/jvi9aLz4pTQC+AAAAAAAAAAA6iAC+NKMaP3KL3D3xreC+pb11vSEbjz0AAAAAAAAAAJNhDb4a1bo/b/ESv6bPPL4/TlG+CLW5vgAAAAAAAAAAbT4LPpndMT+MbaC75VDjvs8eIj6GiBy+AAAAAAAAAAAgl00+16JfP4pjZj6lu/++NSCOPvK9Kb0AAAAAAAAAAIDgcD0FNPe7MOJRu/UtujwsYVu9vheaPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9Q63Q8OXc0CUhpRSlIwBbJRLzYwBdJRHQK6h6twrDqJ1fZQoaAZoCWgPQwhuwVJdwHBvQJSGlFKUaBVL6mgWR0CuofoSL61tdX2UKGgGaAloD0MIg79fzBaib0CUhpRSlGgVS+loFkdArqH+hGpdbHV9lChoBmgJaA9DCBKHbCAdvXFAlIaUUpRoFUvSaBZHQK6iScy31Bd1fZQoaAZoCWgPQwhXPsvzYHBvQJSGlFKUaBVL+mgWR0CuomwXhwVCdX2UKGgGaAloD0MISu6wiQwncECUhpRSlGgVS99oFkdArqL4t8NQTHV9lChoBmgJaA9DCBVwz/Nnr3NAlIaUUpRoFUvbaBZHQK6jDmPHT7V1fZQoaAZoCWgPQwh7FK5H4WBzQJSGlFKUaBVL4WgWR0Cuow7Q1JlKdX2UKGgGaAloD0MIXMzPDY2rckCUhpRSlGgVS/JoFkdArqNKh+OOsHV9lChoBmgJaA9DCKCLhozHPXNAlIaUUpRoFUvzaBZHQK6jybsniNt1fZQoaAZoCWgPQwjG+3H7ZQpyQJSGlFKUaBVL1GgWR0Cuo/6+WWyDdX2UKGgGaAloD0MIr1sExnoEcUCUhpRSlGgVS/loFkdArqRPjABT43V9lChoBmgJaA9DCNXNxd/2pnJAlIaUUpRoFUvgaBZHQK6k/nbItDl1fZQoaAZoCWgPQwgArmTHRvByQJSGlFKUaBVNPgJoFkdArqYZsCT2WnV9lChoBmgJaA9DCP5itmQV5XFAlIaUUpRoFUvKaBZHQK6mJfDUExJ1fZQoaAZoCWgPQwi4dTdP9UVyQJSGlFKUaBVL7WgWR0CuplcOTaCddX2UKGgGaAloD0MIHlN3ZZfEc0CUhpRSlGgVTQIBaBZHQK6mZgx8D0V1fZQoaAZoCWgPQwjC/BUy14txQJSGlFKUaBVL+GgWR0Cupo3BYV7AdX2UKGgGaAloD0MIFxBaD58xckCUhpRSlGgVS/NoFkdArqbIPd2xIXV9lChoBmgJaA9DCHv6CPzh7HBAlIaUUpRoFU0WAWgWR0Cupwl4LThHdX2UKGgGaAloD0MIucMmMvPlckCUhpRSlGgVS+BoFkdArqcvQ0GeMHV9lChoBmgJaA9DCCcXY2CdhnFAlIaUUpRoFUvaaBZHQK6nT7CzkZJ1fZQoaAZoCWgPQwg/xXHglbBxQJSGlFKUaBVNCQFoFkdArqfYKfFrEnV9lChoBmgJaA9DCLJ/ngYM3nJAlIaUUpRoFUviaBZHQK6ojW7voeR1fZQoaAZoCWgPQwgKZeHrK3lxQJSGlFKUaBVNAgFoFkdArqjZh4MWoHV9lChoBmgJaA9DCB2vQPTkG3FAlIaUUpRoFU0ZAWgWR0CuqRQEIPbxdX2UKGgGaAloD0MIZYwPsxesbUCUhpRSlGgVS9loFkdArqkZNZeRgnV9lChoBmgJaA9DCH7ja8/sanBAlIaUUpRoFUvTaBZHQK6qUy9mHxl1fZQoaAZoCWgPQwiutmJ/2T5xQJSGlFKUaBVL7GgWR0CuqpnM+u/2dX2UKGgGaAloD0MIJxWNtb8gcUCUhpRSlGgVS8RoFkdArqrRxBE8aHV9lChoBmgJaA9DCGVtUzxuFXNAlIaUUpRoFUvpaBZHQK6q3Z7HAAR1fZQoaAZoCWgPQwjzdRn+UzJyQJSGlFKUaBVL+mgWR0CuqvEwN9YwdX2UKGgGaAloD0MIDeGYZQ/IcECUhpRSlGgVS+ZoFkdArqr59qk/KXV9lChoBmgJaA9DCNtN8E2Tx3JAlIaUUpRoFUvZaBZHQK6q9TkQwsZ1fZQoaAZoCWgPQwi/R/31CuZxQJSGlFKUaBVL1WgWR0Cuq0Twc5sCdX2UKGgGaAloD0MIaQBvgcSmc0CUhpRSlGgVS+1oFkdArqvWUUwi7nV9lChoBmgJaA9DCL5qZcKv3XFAlIaUUpRoFUvSaBZHQK6r4btJFsp1fZQoaAZoCWgPQwhntFVJZO1XQJSGlFKUaBVN6ANoFkdArqv2iQDFInV9lChoBmgJaA9DCHSXxFnRpnJAlIaUUpRoFUvZaBZHQK6snwiJO351fZQoaAZoCWgPQwhDqb2I9p9wQJSGlFKUaBVLzmgWR0CurOtBOYY0dX2UKGgGaAloD0MI8djPYim/b0CUhpRSlGgVS+BoFkdArq0DqKP4mHV9lChoBmgJaA9DCGebG9OT425AlIaUUpRoFUvcaBZHQK6tI/5ckdF1fZQoaAZoCWgPQwik/+VatCFUQJSGlFKUaBVLu2gWR0CureZeZ5RkdX2UKGgGaAloD0MIyHxAoDOYc0CUhpRSlGgVS81oFkdArq6KbnX/YXV9lChoBmgJaA9DCO87hsd+e3FAlIaUUpRoFU0AAWgWR0CurwEXtShrdX2UKGgGaAloD0MIxTpVvufec0CUhpRSlGgVS9FoFkdArq8GoaUA1nV9lChoBmgJaA9DCJJAg03dDHFAlIaUUpRoFUvsaBZHQK6vD52Qnx91fZQoaAZoCWgPQwhUck7sISltQJSGlFKUaBVNBQFoFkdArq+Qb6xgRnV9lChoBmgJaA9DCLxbWaKzDnNAlIaUUpRoFU0AAWgWR0Cur48+iaiLdX2UKGgGaAloD0MILUDbalakcUCUhpRSlGgVTQkBaBZHQK6vvAUL2Ht1fZQoaAZoCWgPQwi/mC1ZFZlwQJSGlFKUaBVL5WgWR0Cur/5zxPO6dX2UKGgGaAloD0MId7rzxHPpcECUhpRSlGgVS+ZoFkdArrAWALApKHV9lChoBmgJaA9DCLJnz2XqIXNAlIaUUpRoFUvvaBZHQK6wIGbkOqh1fZQoaAZoCWgPQwhpxw2/m4hwQJSGlFKUaBVL7GgWR0CusOQ4CIUKdX2UKGgGaAloD0MItoZSe5FVcUCUhpRSlGgVS91oFkdArrEj212JSHV9lChoBmgJaA9DCKLxRBAno3JAlIaUUpRoFUvuaBZHQK6xT7MPjGV1fZQoaAZoCWgPQwj0biwojLhvQJSGlFKUaBVL6WgWR0CusiKk/KQrdX2UKGgGaAloD0MI3LdaJ66gcUCUhpRSlGgVS8hoFkdArrKZpFkQPXV9lChoBmgJaA9DCA8MIHyo73JAlIaUUpRoFUvjaBZHQK6yssZpBX11fZQoaAZoCWgPQwh2wHXFTABwQJSGlFKUaBVL9WgWR0Cus4wIUrTZdX2UKGgGaAloD0MIXW4w1CHhcUCUhpRSlGgVS9ZoFkdArrOEWZZ0S3V9lChoBmgJaA9DCIaRXtQueHBAlIaUUpRoFUv5aBZHQK6zrN5dGAl1fZQoaAZoCWgPQwhyMQbWcctwQJSGlFKUaBVL6mgWR0Cus+mz8gp0dX2UKGgGaAloD0MI6q7sgoEGckCUhpRSlGgVS+poFkdArrQbVQQ+U3V9lChoBmgJaA9DCMsSnWVWd3BAlIaUUpRoFUvWaBZHQK60KxC6Ymd1fZQoaAZoCWgPQwgwnkFDf8lyQJSGlFKUaBVL6WgWR0CutF/6XSjQdX2UKGgGaAloD0MIn6pCA/E1c0CUhpRSlGgVTZUBaBZHQK60bM3ZPEd1fZQoaAZoCWgPQwhVMZV+Qv1xQJSGlFKUaBVL9mgWR0CutLAksz2wdX2UKGgGaAloD0MIuJIdG4GKW0CUhpRSlGgVTegDaBZHQK61k5p8F6l1fZQoaAZoCWgPQwgDXfsCOqpxQJSGlFKUaBVL+mgWR0CutZV6mfoSdX2UKGgGaAloD0MIMC3qk5zXcUCUhpRSlGgVS/xoFkdArrXVdE9dNXV9lChoBmgJaA9DCN6wbVGmOHJAlIaUUpRoFUv+aBZHQK62A8lolD51fZQoaAZoCWgPQwjfUPhsXeBxQJSGlFKUaBVL62gWR0CutniWeHzpdX2UKGgGaAloD0MI203wTVOmcUCUhpRSlGgVS9loFkdArraNqL0jDHV9lChoBmgJaA9DCL4uw3+6qXJAlIaUUpRoFUvtaBZHQK629AhStNl1fZQoaAZoCWgPQwgjumddYwZwQJSGlFKUaBVL22gWR0Cut08m8dxRdX2UKGgGaAloD0MIE7h1N4+wckCUhpRSlGgVS99oFkdArrdpZ0Syt3V9lChoBmgJaA9DCPImv0XnzXNAlIaUUpRoFUvLaBZHQK63ibNKRMh1fZQoaAZoCWgPQwiIEi15/M5xQJSGlFKUaBVL6WgWR0Cut6hw++uedX2UKGgGaAloD0MIwhcmU4VCb0CUhpRSlGgVS95oFkdArreshC+lCXV9lChoBmgJaA9DCHyd1JelcnBAlIaUUpRoFUvoaBZHQK64ABvJiiJ1fZQoaAZoCWgPQwjC+6pcqAtzQJSGlFKUaBVL5WgWR0CuuCniWE9MdX2UKGgGaAloD0MIzHoxlJNxc0CUhpRSlGgVS+VoFkdArrhmZuyeI3V9lChoBmgJaA9DCNV1qKYkcXNAlIaUUpRoFUv4aBZHQK64Z3ta6jF1fZQoaAZoCWgPQwgSE9TwbdpxQJSGlFKUaBVL3mgWR0CuuQa2nbZfdX2UKGgGaAloD0MIilbuBSYxc0CUhpRSlGgVS+9oFkdArrlIp+c6NnV9lChoBmgJaA9DCKrSFtf4dnBAlIaUUpRoFUveaBZHQK65RrBTGYN1fZQoaAZoCWgPQwieXFMgM9ZuQJSGlFKUaBVL3mgWR0CuuXNFz+3pdX2UKGgGaAloD0MIurw5XOtLcUCUhpRSlGgVS81oFkdArrmeN5t3wHV9lChoBmgJaA9DCKpFRDE5MXNAlIaUUpRoFUvhaBZHQK66AQ7LdN51fZQoaAZoCWgPQwgAx549Vw9zQJSGlFKUaBVL3WgWR0Cuula9kBjndX2UKGgGaAloD0MIFTyFXOl6cUCUhpRSlGgVS9poFkdArrqgTTOPenV9lChoBmgJaA9DCH12wHVFQXNAlIaUUpRoFUvNaBZHQK67LPszEaV1fZQoaAZoCWgPQwiOlC2S9h5xQJSGlFKUaBVL6mgWR0Cuu0QZGax5dX2UKGgGaAloD0MIt0Htt/ZMcECUhpRSlGgVS/RoFkdArrty1gH/tXV9lChoBmgJaA9DCNjSo6leGnBAlIaUUpRoFUvaaBZHQK67l8Rcu8N1fZQoaAZoCWgPQwgoSGx3zx9xQJSGlFKUaBVNFAFoFkdArru3xx1gY3V9lChoBmgJaA9DCH8yxodZFm5AlIaUUpRoFUvfaBZHQK676/B3zMB1fZQoaAZoCWgPQwhCQL6Eio1wQJSGlFKUaBVL3GgWR0Cuu+Ig/1QJdX2UKGgGaAloD0MIY5eo3pqackCUhpRSlGgVTRoBaBZHQK6779fCyhV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 472, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fe09f67ee5b34eb185445782eecd0a26f78fdbb581d7264ad7fd82eaffe1f685
3
- size 250969
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47dc7f20b6dfc83293a2c9c78a5afd4c342b5207009e9d8253f409a6eeb1862e
3
+ size 193686
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 244.82643934389188, "std_reward": 20.7445580094632, "is_deterministic": true, "n_eval_episodes": 15, "eval_datetime": "2022-05-10T14:48:52.265527"}
 
1
+ {"mean_reward": 273.2251017949429, "std_reward": 17.768230431706886, "is_deterministic": true, "n_eval_episodes": 15, "eval_datetime": "2022-05-10T15:32:14.369083"}