lgaalves commited on
Commit
0238ad5
·
1 Parent(s): 383fa34

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - lgaalves/camel-physics
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ ---
9
+
10
+
11
+
12
+ # gpt2-xl-camel-ai-physics (1.5B)
13
+
14
+ **lgaalves/gpt2-xl-camel-ai-physics** is an instruction fine-tuned model based on the GPT-2 transformer architecture.
15
+
16
+
17
+ ### Benchmark Metrics
18
+
19
+ | Metric |lgaalves/gpt2-xl-camel-ai-physics |gpt2-xl (base) |
20
+ |-----------------------|-------|-------|
21
+ | Avg. | - | 36.66 |
22
+ | ARC (25-shot) | - | 30.29 |
23
+ | HellaSwag (10-shot) | - | 51.38 |
24
+ | MMLU (5-shot) | - | 26.43 |
25
+ | TruthfulQA (0-shot) | - | 38.54 |
26
+
27
+ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
28
+
29
+ ### Model Details
30
+
31
+ * **Trained by**: Luiz G A Alves
32
+ * **Model type:** **lgaalves/gpt2-xl-camel-ai-physics** is an auto-regressive language model based on the GPT-2 transformer architecture.
33
+ * **Language(s)**: English
34
+
35
+ ### How to use:
36
+
37
+ ```python
38
+ # Use a pipeline as a high-level helper
39
+ >>> from transformers import pipeline
40
+ >>> pipe = pipeline("text-generation", model="lgaalves/gpt2-xl-camel-ai-physics")
41
+ >>> question = "What is a large language model?"
42
+ >>> answer = pipe(question)
43
+ >>> print(answer[0]['generated_text'])
44
+
45
+ ```
46
+
47
+ or, you can load the model direclty using:
48
+
49
+ ```python
50
+ # Load model directly
51
+ from transformers import AutoTokenizer, AutoModelForCausalLM
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2-xl-camel-ai-physics")
54
+ model = AutoModelForCausalLM.from_pretrained("lgaalves/gpt2-xl-camel-ai-physics")
55
+ ```
56
+
57
+ ### Training Dataset
58
+
59
+ `lgaalves/gpt2-xl-camel-ai-physics` trained on the GPT4 generated dataset [lgaalves/camel-physics](https://huggingface.co/datasets/lgaalves/camel-physics).
60
+
61
+ ### Training Procedure
62
+
63
+ `lgaalves/gpt2-xl-camel-ai-physics` was instruction fine-tuned using LoRA on 1 Tesla V100-SXM2-16GB. It took about 3 hours to train it.
64
+
65
+
66
+ # Intended uses, limitations & biases
67
+
68
+ You can use the raw model for text generation or fine-tune it to a downstream task. The model was not extensively tested and may produce false information. It contains a lot of unfiltered content from the internet, which is far from neutral.