lgaalves commited on
Commit
f7db5b1
·
1 Parent(s): 724a1f7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - GAIR/lima
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ ---
9
+
10
+
11
+
12
+ # lgaalves/gpt2-xl_lima (1.5B)
13
+
14
+ **lgaalves/lgaalves/gpt2-xl_lima** is an instruction fine-tuned model based on the GPT-2 transformer architecture.
15
+
16
+
17
+ ### Benchmark Metrics
18
+
19
+ | Metric |gpt2-xl_lima |gpt2-xl (base) |
20
+ |-----------------------|-------|-------|
21
+ | Avg. | - | 36.66 |
22
+ | ARC (25-shot) | - | 30.29 |
23
+ | HellaSwag (10-shot) | - | 51.38 |
24
+ | MMLU (5-shot) | - | 26.43 |
25
+ | TruthfulQA (0-shot) | - | 38.54 |
26
+
27
+
28
+ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
29
+
30
+ ### Model Details
31
+
32
+ * **Trained by**: Luiz G A Alves
33
+ * **Model type:** **lgaalves/gpt2-xl_lima** is an auto-regressive language model based on the GPT-2 transformer architecture.
34
+ * **Language(s)**: English
35
+
36
+ ### How to use:
37
+
38
+ ```python
39
+ # Use a pipeline as a high-level helper
40
+ >>> from transformers import pipeline
41
+ >>> pipe = pipeline("text-generation", model="lgaalves/gpt2-xl_lima")
42
+ >>> question = "What is a large language model?"
43
+ >>> answer = pipe(question)
44
+ >>> print(answer[0]['generated_text'])
45
+
46
+ ```
47
+
48
+ or, you can load the model direclty using:
49
+
50
+ ```python
51
+ # Load model directly
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+
54
+ tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2-xl_lima")
55
+ model = AutoModelForCausalLM.from_pretrained("lgaalves/gpt2-xl_lima")
56
+ ```
57
+
58
+ ### Training Dataset
59
+
60
+ `lgaalves/gpt2-xl_lima` trained on the [GAIR/lima](https://huggingface.co/datasets/GAIR/lima).
61
+
62
+ ### Training Procedure
63
+
64
+ `lgaalves/gpt2-xl_lima` was instruction fine-tuned using LoRA on 1 Tesla V100-SXM2-16GB. It took about 10 minutes to train it.
65
+
66
+ # Intended uses, limitations & biases
67
+
68
+ You can use the raw model for text generation or fine-tune it to a downstream task. The model was not extensively tested and may produce false information. It contains a lot of unfiltered content from the internet, which is far from neutral.