lgaalves commited on
Commit
69753cd
·
1 Parent(s): 00e9a5e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -1
README.md CHANGED
@@ -5,4 +5,62 @@ datasets:
5
  pipeline_tag: text-generation
6
  ---
7
 
8
- LlaMA 2 7B fine-tuned on the open platypus dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  pipeline_tag: text-generation
6
  ---
7
 
8
+ ---
9
+ license: cc-by-nc-sa-4.0
10
+ language:
11
+ - en
12
+ datasets:
13
+ - garage-bAInd/Open-Platypus
14
+ ---
15
+
16
+ # llama-2-7b-hf_open-platypus
17
+
18
+
19
+ **llama-2-7b-hf_open-platypus** is an instruction fine-tuned model based on the LLaMA2-7B transformer architecture.
20
+
21
+
22
+ ### Benchmark Metrics
23
+
24
+ | Metric | Value |
25
+ |-----------------------|-------|
26
+ | MMLU (5-shot) | - |
27
+ | ARC (25-shot) | - |
28
+ | HellaSwag (10-shot) | - |
29
+ | TruthfulQA (0-shot) | - |
30
+ | Avg. | - |
31
+
32
+ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
33
+
34
+ ### Model Details
35
+
36
+ * **Trained by**: Luiz G A Alves
37
+ * **Model type:** **llama-2-7b-hf_open-platypus** is an auto-regressive language model based on the LLaMA2 transformer architecture.
38
+ * **Language(s)**: English
39
+
40
+ ### Prompt Template
41
+ ```
42
+ ### Instruction:
43
+
44
+ <prompt> (without the <>)
45
+
46
+ ### Response:
47
+ ```
48
+
49
+ ### Training Dataset
50
+
51
+ `lgaalves/llama-2-7b-hf_open-platypus` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
52
+
53
+
54
+ ### Training Procedure
55
+
56
+ `lgaalves/llama-2-7b-hf_open-platypus` was instruction fine-tuned using LoRA on 1 Tesla V100-SXM2-16GB.
57
+
58
+
59
+ ### Limitations and bias
60
+
61
+ Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.
62
+
63
+ Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
64
+
65
+
66
+