lgaalves commited on
Commit
0bb6ebe
·
1 Parent(s): 9be4cad

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - garage-bAInd/Open-Platypus
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ ---
9
+
10
+
11
+
12
+ # tinyllama-1.1b-chat-v0.3-platypus
13
+
14
+ **tinyllama-1.1b-chat-v0.3-platypus** is an instruction fine-tuned model based on the tinyllama transformer architecture.
15
+
16
+
17
+ ### Benchmark Metrics
18
+
19
+ | Metric |lgaalves/tinyllama-1.1b-chat-v0.3-platypus | tinyllama-1.1b-chat-v0.3 |
20
+ |-----------------------|-------|-------|
21
+ | Avg. | - | 38.74 |
22
+ | ARC (25-shot) | - | 35.07 |
23
+ | HellaSwag (10-shot) | - | 57.7 |
24
+ | MMLU (5-shot) | - | 25.53 |
25
+ | TruthfulQA (0-shot) | - | 36.67 |
26
+
27
+ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
28
+
29
+ ### Model Details
30
+
31
+ * **Trained by**: Luiz G A Alves
32
+ * **Model type:** **tinyllama-1.1b-chat-v0.3-platypus** is an auto-regressive language model based on the tinyllama transformer architecture.
33
+ * **Language(s)**: English
34
+
35
+ ### How to use:
36
+
37
+ ```python
38
+ # Use a pipeline as a high-level helper
39
+ >>> from transformers import pipeline
40
+ >>> pipe = pipeline("text-generation", model="lgaalves/tinyllama-1.1b-chat-v0.3-platypus")
41
+ >>> question = "What is a large language model?"
42
+ >>> answer = pipe(question)
43
+ >>> print(answer[0]['generated_text'])
44
+ ```
45
+
46
+ or, you can load the model direclty using:
47
+
48
+ ```python
49
+ # Load model directly
50
+ from transformers import AutoTokenizer, AutoModelForCausalLM
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.3-platypus")
53
+ model = AutoModelForCausalLM.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.3-platypus")
54
+ ```
55
+
56
+ ### Training Dataset
57
+
58
+ `lgaalves/tinyllama-1.1b-chat-v0.3-platypus` trained using STEM and logic based dataset [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
59
+
60
+ ### Training Procedure
61
+
62
+ `lgaalves/tinyllama-1.1b-chat-v0.3-platypus` was instruction fine-tuned using LoRA on 1 V100 GPU on Google Colab. It took about 43 minutes to train it.
63
+
64
+
65
+ # Intended uses, limitations & biases
66
+
67
+ You can use the raw model for text generation or fine-tune it to a downstream task. The model was not extensively tested and may produce false information. It contains a lot of unfiltered content from the internet, which is far from neutral.