File size: 3,870 Bytes
7a3ab06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: kto_trained_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# kto_trained_1

This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the lightblue_kto_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3031
- Rewards/chosen: 1.5421
- Logps/chosen: -343.9051
- Logits/chosen: -69679219.2
- Rewards/rejected: -7.3046
- Logps/rejected: -233.7684
- Logits/rejected: -34451756.1379
- Rewards/margins: 8.8467
- Kl: 1080.3173

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Logps/chosen | Logits/chosen  | Rewards/rejected | Logps/rejected | Logits/rejected | Rewards/margins |           |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:------------:|:--------------:|:----------------:|:--------------:|:---------------:|:---------------:|:---------:|
| 0.2623        | 0.0997 | 36   | 0.3340          | 1.3847         | -345.4796    | -55713169.0667 | -3.6384          | -197.1070      | -40055004.6897  | 5.0231          | 890.2159  |
| 0.3222        | 0.1995 | 72   | 0.3273          | 1.5219         | -344.1068    | -61469499.7333 | -4.9277          | -209.9999      | -32503238.6207  | 6.4496          | 1189.5447 |
| 0.3798        | 0.2992 | 108  | 0.3185          | 1.5573         | -343.7531    | -63003302.4    | -5.7081          | -217.8038      | -31597484.1379  | 7.2654          | 955.4995  |
| 0.3755        | 0.3990 | 144  | 0.3016          | 0.8908         | -350.4181    | -63924428.8    | -6.8986          | -229.7092      | -27711788.1379  | 7.7895          | 705.8951  |
| 0.3454        | 0.4987 | 180  | 0.3053          | 1.4481         | -344.8449    | -67193476.2667 | -6.5311          | -226.0336      | -37107747.3103  | 7.9792          | 836.6326  |
| 0.2633        | 0.5984 | 216  | 0.3085          | 1.5864         | -343.4627    | -68801646.9333 | -6.4654          | -225.3766      | -37986458.4828  | 8.0517          | 974.3778  |
| 0.2519        | 0.6982 | 252  | 0.3109          | 1.5635         | -343.6908    | -69407142.4    | -6.4303          | -225.0262      | -34758311.7241  | 7.9939          | 1106.7635 |
| 0.2959        | 0.7979 | 288  | 0.3033          | 1.6631         | -342.6956    | -69444923.7333 | -7.0061          | -230.7837      | -36029797.5172  | 8.6691          | 1082.5067 |
| 0.2921        | 0.8977 | 324  | 0.3022          | 1.4322         | -345.0042    | -69711099.7333 | -7.5841          | -236.5635      | -35742644.9655  | 9.0163          | 1047.6223 |
| 0.3122        | 0.9974 | 360  | 0.3031          | 1.5421         | -343.9051    | -69679219.2    | -7.3046          | -233.7684      | -34451756.1379  | 8.8467          | 1080.3173 |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3