lighteternal
commited on
Commit
·
9a23d52
1
Parent(s):
0d2ad8d
fixed config.json
Browse files
.ipynb_checkpoints/ASR_Inference-checkpoint.ipynb
DELETED
@@ -1,960 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"metadata": {
|
7 |
-
"ExecuteTime": {
|
8 |
-
"end_time": "2021-03-17T11:10:25.794375Z",
|
9 |
-
"start_time": "2021-03-17T11:10:24.301013Z"
|
10 |
-
}
|
11 |
-
},
|
12 |
-
"outputs": [
|
13 |
-
{
|
14 |
-
"name": "stderr",
|
15 |
-
"output_type": "stream",
|
16 |
-
"text": [
|
17 |
-
"/home/earendil/anaconda3/envs/cuda110/lib/python3.8/site-packages/torchaudio/backend/utils.py:53: UserWarning: \"sox\" backend is being deprecated. The default backend will be changed to \"sox_io\" backend in 0.8.0 and \"sox\" backend will be removed in 0.9.0. Please migrate to \"sox_io\" backend. Please refer to https://github.com/pytorch/audio/issues/903 for the detail.\n",
|
18 |
-
" warnings.warn(\n"
|
19 |
-
]
|
20 |
-
}
|
21 |
-
],
|
22 |
-
"source": [
|
23 |
-
"from transformers import Wav2Vec2ForCTC\n",
|
24 |
-
"from transformers import Wav2Vec2Processor\n",
|
25 |
-
"from datasets import load_dataset, load_metric\n",
|
26 |
-
"import re\n",
|
27 |
-
"import torchaudio\n",
|
28 |
-
"import librosa\n",
|
29 |
-
"import numpy as np\n",
|
30 |
-
"from datasets import load_dataset, load_metric\n",
|
31 |
-
"import torch"
|
32 |
-
]
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"cell_type": "code",
|
36 |
-
"execution_count": 2,
|
37 |
-
"metadata": {
|
38 |
-
"ExecuteTime": {
|
39 |
-
"end_time": "2021-03-17T11:10:29.608803Z",
|
40 |
-
"start_time": "2021-03-17T11:10:29.599700Z"
|
41 |
-
}
|
42 |
-
},
|
43 |
-
"outputs": [],
|
44 |
-
"source": [
|
45 |
-
"chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\“\\%\\‘\\”\\�]'\n",
|
46 |
-
"\n",
|
47 |
-
"def remove_special_characters(batch):\n",
|
48 |
-
" batch[\"text\"] = re.sub(chars_to_ignore_regex, '', batch[\"sentence\"]).lower() + \" \"\n",
|
49 |
-
" return batch\n",
|
50 |
-
"\n",
|
51 |
-
"def speech_file_to_array_fn(batch):\n",
|
52 |
-
" speech_array, sampling_rate = torchaudio.load(batch[\"path\"])\n",
|
53 |
-
" batch[\"speech\"] = speech_array[0].numpy()\n",
|
54 |
-
" batch[\"sampling_rate\"] = sampling_rate\n",
|
55 |
-
" batch[\"target_text\"] = batch[\"text\"]\n",
|
56 |
-
" return batch\n",
|
57 |
-
"\n",
|
58 |
-
"def resample(batch):\n",
|
59 |
-
" batch[\"speech\"] = librosa.resample(np.asarray(batch[\"speech\"]), 48_000, 16_000)\n",
|
60 |
-
" batch[\"sampling_rate\"] = 16_000\n",
|
61 |
-
" return batch\n",
|
62 |
-
"\n",
|
63 |
-
"def prepare_dataset(batch):\n",
|
64 |
-
" # check that all files have the correct sampling rate\n",
|
65 |
-
" assert (\n",
|
66 |
-
" len(set(batch[\"sampling_rate\"])) == 1\n",
|
67 |
-
" ), f\"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.\"\n",
|
68 |
-
"\n",
|
69 |
-
" batch[\"input_values\"] = processor(batch[\"speech\"], sampling_rate=batch[\"sampling_rate\"][0]).input_values\n",
|
70 |
-
" \n",
|
71 |
-
" with processor.as_target_processor():\n",
|
72 |
-
" batch[\"labels\"] = processor(batch[\"target_text\"]).input_ids\n",
|
73 |
-
" return batch"
|
74 |
-
]
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"cell_type": "code",
|
78 |
-
"execution_count": 4,
|
79 |
-
"metadata": {
|
80 |
-
"ExecuteTime": {
|
81 |
-
"end_time": "2021-03-17T11:11:02.120225Z",
|
82 |
-
"start_time": "2021-03-17T11:10:56.182488Z"
|
83 |
-
}
|
84 |
-
},
|
85 |
-
"outputs": [
|
86 |
-
{
|
87 |
-
"name": "stderr",
|
88 |
-
"output_type": "stream",
|
89 |
-
"text": [
|
90 |
-
"Special tokens have been added in the vocabulary, make sure the associated word embedding are fine-tuned or trained.\n"
|
91 |
-
]
|
92 |
-
}
|
93 |
-
],
|
94 |
-
"source": [
|
95 |
-
"model = Wav2Vec2ForCTC.from_pretrained(\".\").to(\"cuda\")\n",
|
96 |
-
"processor = Wav2Vec2Processor.from_pretrained(\".\")"
|
97 |
-
]
|
98 |
-
},
|
99 |
-
{
|
100 |
-
"cell_type": "code",
|
101 |
-
"execution_count": 6,
|
102 |
-
"metadata": {
|
103 |
-
"ExecuteTime": {
|
104 |
-
"end_time": "2021-03-17T11:12:18.847005Z",
|
105 |
-
"start_time": "2021-03-17T11:12:14.919077Z"
|
106 |
-
}
|
107 |
-
},
|
108 |
-
"outputs": [
|
109 |
-
{
|
110 |
-
"name": "stderr",
|
111 |
-
"output_type": "stream",
|
112 |
-
"text": [
|
113 |
-
"Using custom data configuration el-afd0a157f05ee080\n"
|
114 |
-
]
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"name": "stdout",
|
118 |
-
"output_type": "stream",
|
119 |
-
"text": [
|
120 |
-
"Downloading and preparing dataset common_voice/el (download: 363.89 MiB, generated: 4.75 MiB, post-processed: Unknown size, total: 368.64 MiB) to /home/earendil/.cache/huggingface/datasets/common_voice/el-afd0a157f05ee080/6.1.0/0041e06ab061b91d0a23234a2221e87970a19cf3a81b20901474cffffeb7869f...\n"
|
121 |
-
]
|
122 |
-
},
|
123 |
-
{
|
124 |
-
"data": {
|
125 |
-
"application/vnd.jupyter.widget-view+json": {
|
126 |
-
"model_id": "",
|
127 |
-
"version_major": 2,
|
128 |
-
"version_minor": 0
|
129 |
-
},
|
130 |
-
"text/plain": [
|
131 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
132 |
-
]
|
133 |
-
},
|
134 |
-
"metadata": {},
|
135 |
-
"output_type": "display_data"
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"name": "stdout",
|
139 |
-
"output_type": "stream",
|
140 |
-
"text": [
|
141 |
-
"\r"
|
142 |
-
]
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"data": {
|
146 |
-
"application/vnd.jupyter.widget-view+json": {
|
147 |
-
"model_id": "",
|
148 |
-
"version_major": 2,
|
149 |
-
"version_minor": 0
|
150 |
-
},
|
151 |
-
"text/plain": [
|
152 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
153 |
-
]
|
154 |
-
},
|
155 |
-
"metadata": {},
|
156 |
-
"output_type": "display_data"
|
157 |
-
},
|
158 |
-
{
|
159 |
-
"name": "stdout",
|
160 |
-
"output_type": "stream",
|
161 |
-
"text": [
|
162 |
-
"\r"
|
163 |
-
]
|
164 |
-
},
|
165 |
-
{
|
166 |
-
"data": {
|
167 |
-
"application/vnd.jupyter.widget-view+json": {
|
168 |
-
"model_id": "",
|
169 |
-
"version_major": 2,
|
170 |
-
"version_minor": 0
|
171 |
-
},
|
172 |
-
"text/plain": [
|
173 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
174 |
-
]
|
175 |
-
},
|
176 |
-
"metadata": {},
|
177 |
-
"output_type": "display_data"
|
178 |
-
},
|
179 |
-
{
|
180 |
-
"name": "stdout",
|
181 |
-
"output_type": "stream",
|
182 |
-
"text": [
|
183 |
-
"\r"
|
184 |
-
]
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"data": {
|
188 |
-
"application/vnd.jupyter.widget-view+json": {
|
189 |
-
"model_id": "",
|
190 |
-
"version_major": 2,
|
191 |
-
"version_minor": 0
|
192 |
-
},
|
193 |
-
"text/plain": [
|
194 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
195 |
-
]
|
196 |
-
},
|
197 |
-
"metadata": {},
|
198 |
-
"output_type": "display_data"
|
199 |
-
},
|
200 |
-
{
|
201 |
-
"name": "stdout",
|
202 |
-
"output_type": "stream",
|
203 |
-
"text": [
|
204 |
-
"\r"
|
205 |
-
]
|
206 |
-
},
|
207 |
-
{
|
208 |
-
"data": {
|
209 |
-
"application/vnd.jupyter.widget-view+json": {
|
210 |
-
"model_id": "",
|
211 |
-
"version_major": 2,
|
212 |
-
"version_minor": 0
|
213 |
-
},
|
214 |
-
"text/plain": [
|
215 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
216 |
-
]
|
217 |
-
},
|
218 |
-
"metadata": {},
|
219 |
-
"output_type": "display_data"
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"name": "stdout",
|
223 |
-
"output_type": "stream",
|
224 |
-
"text": [
|
225 |
-
"\r",
|
226 |
-
"Dataset common_voice downloaded and prepared to /home/earendil/.cache/huggingface/datasets/common_voice/el-afd0a157f05ee080/6.1.0/0041e06ab061b91d0a23234a2221e87970a19cf3a81b20901474cffffeb7869f. Subsequent calls will reuse this data.\n"
|
227 |
-
]
|
228 |
-
}
|
229 |
-
],
|
230 |
-
"source": [
|
231 |
-
"common_voice_test = load_dataset(\"common_voice\", \"el\", data_dir=\"cv-corpus-6.1-2020-12-11\", split=\"test\")"
|
232 |
-
]
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"cell_type": "code",
|
236 |
-
"execution_count": 7,
|
237 |
-
"metadata": {
|
238 |
-
"ExecuteTime": {
|
239 |
-
"end_time": "2021-03-17T11:12:18.860240Z",
|
240 |
-
"start_time": "2021-03-17T11:12:18.857252Z"
|
241 |
-
}
|
242 |
-
},
|
243 |
-
"outputs": [],
|
244 |
-
"source": [
|
245 |
-
"common_voice_test = common_voice_test.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\"])"
|
246 |
-
]
|
247 |
-
},
|
248 |
-
{
|
249 |
-
"cell_type": "code",
|
250 |
-
"execution_count": 8,
|
251 |
-
"metadata": {
|
252 |
-
"ExecuteTime": {
|
253 |
-
"end_time": "2021-03-17T11:12:18.928497Z",
|
254 |
-
"start_time": "2021-03-17T11:12:18.869198Z"
|
255 |
-
}
|
256 |
-
},
|
257 |
-
"outputs": [
|
258 |
-
{
|
259 |
-
"data": {
|
260 |
-
"application/vnd.jupyter.widget-view+json": {
|
261 |
-
"model_id": "9869698af86e44bca75c4252996ff1a3",
|
262 |
-
"version_major": 2,
|
263 |
-
"version_minor": 0
|
264 |
-
},
|
265 |
-
"text/plain": [
|
266 |
-
"HBox(children=(IntProgress(value=0, max=1522), HTML(value='')))"
|
267 |
-
]
|
268 |
-
},
|
269 |
-
"metadata": {},
|
270 |
-
"output_type": "display_data"
|
271 |
-
},
|
272 |
-
{
|
273 |
-
"name": "stdout",
|
274 |
-
"output_type": "stream",
|
275 |
-
"text": [
|
276 |
-
"\n"
|
277 |
-
]
|
278 |
-
}
|
279 |
-
],
|
280 |
-
"source": [
|
281 |
-
"common_voice_test = common_voice_test.map(remove_special_characters, remove_columns=[\"sentence\"])"
|
282 |
-
]
|
283 |
-
},
|
284 |
-
{
|
285 |
-
"cell_type": "code",
|
286 |
-
"execution_count": 9,
|
287 |
-
"metadata": {
|
288 |
-
"ExecuteTime": {
|
289 |
-
"end_time": "2021-03-17T11:12:40.824595Z",
|
290 |
-
"start_time": "2021-03-17T11:12:18.937930Z"
|
291 |
-
}
|
292 |
-
},
|
293 |
-
"outputs": [
|
294 |
-
{
|
295 |
-
"data": {
|
296 |
-
"application/vnd.jupyter.widget-view+json": {
|
297 |
-
"model_id": "d232b2bb009543e0bb2542bce273c554",
|
298 |
-
"version_major": 2,
|
299 |
-
"version_minor": 0
|
300 |
-
},
|
301 |
-
"text/plain": [
|
302 |
-
"HBox(children=(IntProgress(value=0, max=1522), HTML(value='')))"
|
303 |
-
]
|
304 |
-
},
|
305 |
-
"metadata": {},
|
306 |
-
"output_type": "display_data"
|
307 |
-
},
|
308 |
-
{
|
309 |
-
"name": "stdout",
|
310 |
-
"output_type": "stream",
|
311 |
-
"text": [
|
312 |
-
"\n"
|
313 |
-
]
|
314 |
-
}
|
315 |
-
],
|
316 |
-
"source": [
|
317 |
-
"common_voice_test = common_voice_test.map(speech_file_to_array_fn, remove_columns=common_voice_test.column_names)"
|
318 |
-
]
|
319 |
-
},
|
320 |
-
{
|
321 |
-
"cell_type": "code",
|
322 |
-
"execution_count": 10,
|
323 |
-
"metadata": {
|
324 |
-
"ExecuteTime": {
|
325 |
-
"end_time": "2021-03-17T11:13:18.078738Z",
|
326 |
-
"start_time": "2021-03-17T11:12:40.834398Z"
|
327 |
-
}
|
328 |
-
},
|
329 |
-
"outputs": [
|
330 |
-
{
|
331 |
-
"name": "stdout",
|
332 |
-
"output_type": "stream",
|
333 |
-
"text": [
|
334 |
-
" "
|
335 |
-
]
|
336 |
-
},
|
337 |
-
{
|
338 |
-
"data": {
|
339 |
-
"application/vnd.jupyter.widget-view+json": {
|
340 |
-
"model_id": "ffd787bc4ed048ae8f4977f2c539bedb",
|
341 |
-
"version_major": 2,
|
342 |
-
"version_minor": 0
|
343 |
-
},
|
344 |
-
"text/plain": [
|
345 |
-
"HBox(children=(IntProgress(value=0, description='#0', max=191, style=ProgressStyle(description_width='initial'…"
|
346 |
-
]
|
347 |
-
},
|
348 |
-
"metadata": {},
|
349 |
-
"output_type": "display_data"
|
350 |
-
},
|
351 |
-
{
|
352 |
-
"data": {
|
353 |
-
"application/vnd.jupyter.widget-view+json": {
|
354 |
-
"model_id": "79c51995d4f84ad8812230480d14b8cd",
|
355 |
-
"version_major": 2,
|
356 |
-
"version_minor": 0
|
357 |
-
},
|
358 |
-
"text/plain": [
|
359 |
-
"HBox(children=(IntProgress(value=0, description='#2', max=190, style=ProgressStyle(description_width='initial'…"
|
360 |
-
]
|
361 |
-
},
|
362 |
-
"metadata": {},
|
363 |
-
"output_type": "display_data"
|
364 |
-
},
|
365 |
-
{
|
366 |
-
"data": {
|
367 |
-
"application/vnd.jupyter.widget-view+json": {
|
368 |
-
"model_id": "52963d9cfd814346af070b2cc4e105cf",
|
369 |
-
"version_major": 2,
|
370 |
-
"version_minor": 0
|
371 |
-
},
|
372 |
-
"text/plain": [
|
373 |
-
"HBox(children=(IntProgress(value=0, description='#5', max=190, style=ProgressStyle(description_width='initial'…"
|
374 |
-
]
|
375 |
-
},
|
376 |
-
"metadata": {},
|
377 |
-
"output_type": "display_data"
|
378 |
-
},
|
379 |
-
{
|
380 |
-
"data": {
|
381 |
-
"application/vnd.jupyter.widget-view+json": {
|
382 |
-
"model_id": "3b940160575143c7acfa142564e9f7d2",
|
383 |
-
"version_major": 2,
|
384 |
-
"version_minor": 0
|
385 |
-
},
|
386 |
-
"text/plain": [
|
387 |
-
"HBox(children=(IntProgress(value=0, description='#3', max=190, style=ProgressStyle(description_width='initial'…"
|
388 |
-
]
|
389 |
-
},
|
390 |
-
"metadata": {},
|
391 |
-
"output_type": "display_data"
|
392 |
-
},
|
393 |
-
{
|
394 |
-
"data": {
|
395 |
-
"application/vnd.jupyter.widget-view+json": {
|
396 |
-
"model_id": "aa540f67ba894d7aa64e12fcdfab5ce0",
|
397 |
-
"version_major": 2,
|
398 |
-
"version_minor": 0
|
399 |
-
},
|
400 |
-
"text/plain": [
|
401 |
-
"HBox(children=(IntProgress(value=0, description='#1', max=191, style=ProgressStyle(description_width='initial'…"
|
402 |
-
]
|
403 |
-
},
|
404 |
-
"metadata": {},
|
405 |
-
"output_type": "display_data"
|
406 |
-
},
|
407 |
-
{
|
408 |
-
"data": {
|
409 |
-
"application/vnd.jupyter.widget-view+json": {
|
410 |
-
"model_id": "4962bdefdbbc44a7a44591480d8d6406",
|
411 |
-
"version_major": 2,
|
412 |
-
"version_minor": 0
|
413 |
-
},
|
414 |
-
"text/plain": [
|
415 |
-
"HBox(children=(IntProgress(value=0, description='#4', max=190, style=ProgressStyle(description_width='initial'…"
|
416 |
-
]
|
417 |
-
},
|
418 |
-
"metadata": {},
|
419 |
-
"output_type": "display_data"
|
420 |
-
},
|
421 |
-
{
|
422 |
-
"data": {
|
423 |
-
"application/vnd.jupyter.widget-view+json": {
|
424 |
-
"model_id": "e77f088bfe5644548fe2c4277d0c86da",
|
425 |
-
"version_major": 2,
|
426 |
-
"version_minor": 0
|
427 |
-
},
|
428 |
-
"text/plain": [
|
429 |
-
"HBox(children=(IntProgress(value=0, description='#7', max=190, style=ProgressStyle(description_width='initial'…"
|
430 |
-
]
|
431 |
-
},
|
432 |
-
"metadata": {},
|
433 |
-
"output_type": "display_data"
|
434 |
-
},
|
435 |
-
{
|
436 |
-
"data": {
|
437 |
-
"application/vnd.jupyter.widget-view+json": {
|
438 |
-
"model_id": "5827f93e99994fe9919aac53f0fb9444",
|
439 |
-
"version_major": 2,
|
440 |
-
"version_minor": 0
|
441 |
-
},
|
442 |
-
"text/plain": [
|
443 |
-
"HBox(children=(IntProgress(value=0, description='#6', max=190, style=ProgressStyle(description_width='initial'…"
|
444 |
-
]
|
445 |
-
},
|
446 |
-
"metadata": {},
|
447 |
-
"output_type": "display_data"
|
448 |
-
},
|
449 |
-
{
|
450 |
-
"name": "stdout",
|
451 |
-
"output_type": "stream",
|
452 |
-
"text": [
|
453 |
-
"\n",
|
454 |
-
"\n",
|
455 |
-
"\n",
|
456 |
-
"\n",
|
457 |
-
"\n",
|
458 |
-
"\n",
|
459 |
-
"\n",
|
460 |
-
"\n"
|
461 |
-
]
|
462 |
-
}
|
463 |
-
],
|
464 |
-
"source": [
|
465 |
-
"common_voice_test = common_voice_test.map(resample, num_proc=8)"
|
466 |
-
]
|
467 |
-
},
|
468 |
-
{
|
469 |
-
"cell_type": "code",
|
470 |
-
"execution_count": 11,
|
471 |
-
"metadata": {
|
472 |
-
"ExecuteTime": {
|
473 |
-
"end_time": "2021-03-17T11:13:25.145155Z",
|
474 |
-
"start_time": "2021-03-17T11:13:18.091929Z"
|
475 |
-
}
|
476 |
-
},
|
477 |
-
"outputs": [
|
478 |
-
{
|
479 |
-
"name": "stderr",
|
480 |
-
"output_type": "stream",
|
481 |
-
"text": [
|
482 |
-
"/home/earendil/anaconda3/envs/cuda110/lib/python3.8/site-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
|
483 |
-
" return array(a, dtype, copy=False, order=order)\n"
|
484 |
-
]
|
485 |
-
},
|
486 |
-
{
|
487 |
-
"name": "stdout",
|
488 |
-
"output_type": "stream",
|
489 |
-
"text": [
|
490 |
-
" "
|
491 |
-
]
|
492 |
-
},
|
493 |
-
{
|
494 |
-
"data": {
|
495 |
-
"application/vnd.jupyter.widget-view+json": {
|
496 |
-
"model_id": "ae326a173a044b1494793e2a70d76a87",
|
497 |
-
"version_major": 2,
|
498 |
-
"version_minor": 0
|
499 |
-
},
|
500 |
-
"text/plain": [
|
501 |
-
"HBox(children=(IntProgress(value=0, description='#0', max=24, style=ProgressStyle(description_width='initial')…"
|
502 |
-
]
|
503 |
-
},
|
504 |
-
"metadata": {},
|
505 |
-
"output_type": "display_data"
|
506 |
-
},
|
507 |
-
{
|
508 |
-
"data": {
|
509 |
-
"application/vnd.jupyter.widget-view+json": {
|
510 |
-
"model_id": "21ab1ef2af5a4a4fb23c68b0c5cf32f8",
|
511 |
-
"version_major": 2,
|
512 |
-
"version_minor": 0
|
513 |
-
},
|
514 |
-
"text/plain": [
|
515 |
-
"HBox(children=(IntProgress(value=0, description='#1', max=24, style=ProgressStyle(description_width='initial')…"
|
516 |
-
]
|
517 |
-
},
|
518 |
-
"metadata": {},
|
519 |
-
"output_type": "display_data"
|
520 |
-
},
|
521 |
-
{
|
522 |
-
"data": {
|
523 |
-
"application/vnd.jupyter.widget-view+json": {
|
524 |
-
"model_id": "d331c5f4f888477daceffe370f6cd89f",
|
525 |
-
"version_major": 2,
|
526 |
-
"version_minor": 0
|
527 |
-
},
|
528 |
-
"text/plain": [
|
529 |
-
"HBox(children=(IntProgress(value=0, description='#3', max=24, style=ProgressStyle(description_width='initial')…"
|
530 |
-
]
|
531 |
-
},
|
532 |
-
"metadata": {},
|
533 |
-
"output_type": "display_data"
|
534 |
-
},
|
535 |
-
{
|
536 |
-
"data": {
|
537 |
-
"application/vnd.jupyter.widget-view+json": {
|
538 |
-
"model_id": "6fa790118aa340e4afb9f83e71403a13",
|
539 |
-
"version_major": 2,
|
540 |
-
"version_minor": 0
|
541 |
-
},
|
542 |
-
"text/plain": [
|
543 |
-
"HBox(children=(IntProgress(value=0, description='#2', max=24, style=ProgressStyle(description_width='initial')…"
|
544 |
-
]
|
545 |
-
},
|
546 |
-
"metadata": {},
|
547 |
-
"output_type": "display_data"
|
548 |
-
},
|
549 |
-
{
|
550 |
-
"data": {
|
551 |
-
"application/vnd.jupyter.widget-view+json": {
|
552 |
-
"model_id": "c8092e2f59a9404596dc2bab206edf2c",
|
553 |
-
"version_major": 2,
|
554 |
-
"version_minor": 0
|
555 |
-
},
|
556 |
-
"text/plain": [
|
557 |
-
"HBox(children=(IntProgress(value=0, description='#5', max=24, style=ProgressStyle(description_width='initial')…"
|
558 |
-
]
|
559 |
-
},
|
560 |
-
"metadata": {},
|
561 |
-
"output_type": "display_data"
|
562 |
-
},
|
563 |
-
{
|
564 |
-
"data": {
|
565 |
-
"application/vnd.jupyter.widget-view+json": {
|
566 |
-
"model_id": "20f913f0caf8401098743b9e5051fc52",
|
567 |
-
"version_major": 2,
|
568 |
-
"version_minor": 0
|
569 |
-
},
|
570 |
-
"text/plain": [
|
571 |
-
"HBox(children=(IntProgress(value=0, description='#4', max=24, style=ProgressStyle(description_width='initial')…"
|
572 |
-
]
|
573 |
-
},
|
574 |
-
"metadata": {},
|
575 |
-
"output_type": "display_data"
|
576 |
-
},
|
577 |
-
{
|
578 |
-
"data": {
|
579 |
-
"application/vnd.jupyter.widget-view+json": {
|
580 |
-
"model_id": "7c7e15e24384494cb49a72106ce41ccd",
|
581 |
-
"version_major": 2,
|
582 |
-
"version_minor": 0
|
583 |
-
},
|
584 |
-
"text/plain": [
|
585 |
-
"HBox(children=(IntProgress(value=0, description='#6', max=24, style=ProgressStyle(description_width='initial')…"
|
586 |
-
]
|
587 |
-
},
|
588 |
-
"metadata": {},
|
589 |
-
"output_type": "display_data"
|
590 |
-
},
|
591 |
-
{
|
592 |
-
"data": {
|
593 |
-
"application/vnd.jupyter.widget-view+json": {
|
594 |
-
"model_id": "73245add55e24ee2a6dbe0713d5073d9",
|
595 |
-
"version_major": 2,
|
596 |
-
"version_minor": 0
|
597 |
-
},
|
598 |
-
"text/plain": [
|
599 |
-
"HBox(children=(IntProgress(value=0, description='#7', max=24, style=ProgressStyle(description_width='initial')…"
|
600 |
-
]
|
601 |
-
},
|
602 |
-
"metadata": {},
|
603 |
-
"output_type": "display_data"
|
604 |
-
},
|
605 |
-
{
|
606 |
-
"name": "stdout",
|
607 |
-
"output_type": "stream",
|
608 |
-
"text": [
|
609 |
-
"\n",
|
610 |
-
"\n",
|
611 |
-
"\n",
|
612 |
-
"\n",
|
613 |
-
"\n",
|
614 |
-
"\n",
|
615 |
-
"\n",
|
616 |
-
"\n"
|
617 |
-
]
|
618 |
-
}
|
619 |
-
],
|
620 |
-
"source": [
|
621 |
-
"common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names, batch_size=8, num_proc=8, batched=True)"
|
622 |
-
]
|
623 |
-
},
|
624 |
-
{
|
625 |
-
"cell_type": "code",
|
626 |
-
"execution_count": 12,
|
627 |
-
"metadata": {
|
628 |
-
"ExecuteTime": {
|
629 |
-
"end_time": "2021-03-17T11:14:12.721500Z",
|
630 |
-
"start_time": "2021-03-17T11:14:08.198478Z"
|
631 |
-
}
|
632 |
-
},
|
633 |
-
"outputs": [
|
634 |
-
{
|
635 |
-
"name": "stderr",
|
636 |
-
"output_type": "stream",
|
637 |
-
"text": [
|
638 |
-
"Using custom data configuration el-ac779bf2c9f7c09b\n"
|
639 |
-
]
|
640 |
-
},
|
641 |
-
{
|
642 |
-
"name": "stdout",
|
643 |
-
"output_type": "stream",
|
644 |
-
"text": [
|
645 |
-
"Downloading and preparing dataset common_voice/el (download: 363.89 MiB, generated: 4.75 MiB, post-processed: Unknown size, total: 368.64 MiB) to /home/earendil/.cache/huggingface/datasets/common_voice/el-ac779bf2c9f7c09b/6.1.0/0041e06ab061b91d0a23234a2221e87970a19cf3a81b20901474cffffeb7869f...\n"
|
646 |
-
]
|
647 |
-
},
|
648 |
-
{
|
649 |
-
"data": {
|
650 |
-
"application/vnd.jupyter.widget-view+json": {
|
651 |
-
"model_id": "",
|
652 |
-
"version_major": 2,
|
653 |
-
"version_minor": 0
|
654 |
-
},
|
655 |
-
"text/plain": [
|
656 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
657 |
-
]
|
658 |
-
},
|
659 |
-
"metadata": {},
|
660 |
-
"output_type": "display_data"
|
661 |
-
},
|
662 |
-
{
|
663 |
-
"name": "stdout",
|
664 |
-
"output_type": "stream",
|
665 |
-
"text": [
|
666 |
-
"\r"
|
667 |
-
]
|
668 |
-
},
|
669 |
-
{
|
670 |
-
"data": {
|
671 |
-
"application/vnd.jupyter.widget-view+json": {
|
672 |
-
"model_id": "",
|
673 |
-
"version_major": 2,
|
674 |
-
"version_minor": 0
|
675 |
-
},
|
676 |
-
"text/plain": [
|
677 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
678 |
-
]
|
679 |
-
},
|
680 |
-
"metadata": {},
|
681 |
-
"output_type": "display_data"
|
682 |
-
},
|
683 |
-
{
|
684 |
-
"name": "stdout",
|
685 |
-
"output_type": "stream",
|
686 |
-
"text": [
|
687 |
-
"\r"
|
688 |
-
]
|
689 |
-
},
|
690 |
-
{
|
691 |
-
"data": {
|
692 |
-
"application/vnd.jupyter.widget-view+json": {
|
693 |
-
"model_id": "",
|
694 |
-
"version_major": 2,
|
695 |
-
"version_minor": 0
|
696 |
-
},
|
697 |
-
"text/plain": [
|
698 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
699 |
-
]
|
700 |
-
},
|
701 |
-
"metadata": {},
|
702 |
-
"output_type": "display_data"
|
703 |
-
},
|
704 |
-
{
|
705 |
-
"name": "stdout",
|
706 |
-
"output_type": "stream",
|
707 |
-
"text": [
|
708 |
-
"\r"
|
709 |
-
]
|
710 |
-
},
|
711 |
-
{
|
712 |
-
"data": {
|
713 |
-
"application/vnd.jupyter.widget-view+json": {
|
714 |
-
"model_id": "",
|
715 |
-
"version_major": 2,
|
716 |
-
"version_minor": 0
|
717 |
-
},
|
718 |
-
"text/plain": [
|
719 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
720 |
-
]
|
721 |
-
},
|
722 |
-
"metadata": {},
|
723 |
-
"output_type": "display_data"
|
724 |
-
},
|
725 |
-
{
|
726 |
-
"name": "stdout",
|
727 |
-
"output_type": "stream",
|
728 |
-
"text": [
|
729 |
-
"\r"
|
730 |
-
]
|
731 |
-
},
|
732 |
-
{
|
733 |
-
"data": {
|
734 |
-
"application/vnd.jupyter.widget-view+json": {
|
735 |
-
"model_id": "",
|
736 |
-
"version_major": 2,
|
737 |
-
"version_minor": 0
|
738 |
-
},
|
739 |
-
"text/plain": [
|
740 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
741 |
-
]
|
742 |
-
},
|
743 |
-
"metadata": {},
|
744 |
-
"output_type": "display_data"
|
745 |
-
},
|
746 |
-
{
|
747 |
-
"name": "stdout",
|
748 |
-
"output_type": "stream",
|
749 |
-
"text": [
|
750 |
-
"\r",
|
751 |
-
"Dataset common_voice downloaded and prepared to /home/earendil/.cache/huggingface/datasets/common_voice/el-ac779bf2c9f7c09b/6.1.0/0041e06ab061b91d0a23234a2221e87970a19cf3a81b20901474cffffeb7869f. Subsequent calls will reuse this data.\n"
|
752 |
-
]
|
753 |
-
}
|
754 |
-
],
|
755 |
-
"source": [
|
756 |
-
"common_voice_test_transcription = load_dataset(\"common_voice\", \"el\", data_dir=\"./cv-corpus-6.1-2020-12-11\", split=\"test\")"
|
757 |
-
]
|
758 |
-
},
|
759 |
-
{
|
760 |
-
"cell_type": "code",
|
761 |
-
"execution_count": 11,
|
762 |
-
"metadata": {
|
763 |
-
"ExecuteTime": {
|
764 |
-
"end_time": "2021-03-14T19:33:39.856174Z",
|
765 |
-
"start_time": "2021-03-14T19:33:14.402825Z"
|
766 |
-
}
|
767 |
-
},
|
768 |
-
"outputs": [],
|
769 |
-
"source": [
|
770 |
-
"# Change this value to try inference on different CommonVoice extracts\n",
|
771 |
-
"example = 678\n",
|
772 |
-
"\n",
|
773 |
-
"input_dict = processor(common_voice_test[\"input_values\"][example], return_tensors=\"pt\", sampling_rate=16_000, padding=True)\n",
|
774 |
-
"\n",
|
775 |
-
"logits = model(input_dict.input_values.to(\"cuda\")).logits\n",
|
776 |
-
"\n",
|
777 |
-
"pred_ids = torch.argmax(logits, dim=-1)"
|
778 |
-
]
|
779 |
-
},
|
780 |
-
{
|
781 |
-
"cell_type": "code",
|
782 |
-
"execution_count": 12,
|
783 |
-
"metadata": {
|
784 |
-
"ExecuteTime": {
|
785 |
-
"end_time": "2021-03-14T19:33:39.887236Z",
|
786 |
-
"start_time": "2021-03-14T19:33:39.881958Z"
|
787 |
-
}
|
788 |
-
},
|
789 |
-
"outputs": [
|
790 |
-
{
|
791 |
-
"name": "stdout",
|
792 |
-
"output_type": "stream",
|
793 |
-
"text": [
|
794 |
-
"Prediction:\n",
|
795 |
-
"πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς\n",
|
796 |
-
"\n",
|
797 |
-
"Reference:\n",
|
798 |
-
"πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς.\n"
|
799 |
-
]
|
800 |
-
}
|
801 |
-
],
|
802 |
-
"source": [
|
803 |
-
"print(\"Prediction:\")\n",
|
804 |
-
"print(processor.decode(pred_ids[0]))\n",
|
805 |
-
"# πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς\n",
|
806 |
-
"\n",
|
807 |
-
"print(\"\\nReference:\")\n",
|
808 |
-
"print(common_voice_test_transcription[\"sentence\"][example].lower())\n",
|
809 |
-
"# πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς."
|
810 |
-
]
|
811 |
-
},
|
812 |
-
{
|
813 |
-
"cell_type": "code",
|
814 |
-
"execution_count": 13,
|
815 |
-
"metadata": {
|
816 |
-
"ExecuteTime": {
|
817 |
-
"end_time": "2021-03-17T11:15:35.637739Z",
|
818 |
-
"start_time": "2021-03-17T11:14:14.689842Z"
|
819 |
-
}
|
820 |
-
},
|
821 |
-
"outputs": [
|
822 |
-
{
|
823 |
-
"data": {
|
824 |
-
"application/vnd.jupyter.widget-view+json": {
|
825 |
-
"model_id": "1f7ba9e12187401f870555d20a6a9458",
|
826 |
-
"version_major": 2,
|
827 |
-
"version_minor": 0
|
828 |
-
},
|
829 |
-
"text/plain": [
|
830 |
-
"HBox(children=(IntProgress(value=0, max=1522), HTML(value='')))"
|
831 |
-
]
|
832 |
-
},
|
833 |
-
"metadata": {},
|
834 |
-
"output_type": "display_data"
|
835 |
-
},
|
836 |
-
{
|
837 |
-
"name": "stdout",
|
838 |
-
"output_type": "stream",
|
839 |
-
"text": [
|
840 |
-
"\n"
|
841 |
-
]
|
842 |
-
}
|
843 |
-
],
|
844 |
-
"source": [
|
845 |
-
"def map_to_result(batch):\n",
|
846 |
-
" model.to(\"cuda\")\n",
|
847 |
-
" input_values = processor(\n",
|
848 |
-
" batch[\"input_values\"], \n",
|
849 |
-
" sampling_rate=16_000, \n",
|
850 |
-
" return_tensors=\"pt\"\n",
|
851 |
-
" ).input_values.to(\"cuda\")\n",
|
852 |
-
"\n",
|
853 |
-
" with torch.no_grad():\n",
|
854 |
-
" logits = model(input_values).logits\n",
|
855 |
-
"\n",
|
856 |
-
" pred_ids = torch.argmax(logits, dim=-1)\n",
|
857 |
-
" batch[\"pred_str\"] = processor.batch_decode(pred_ids)[0]\n",
|
858 |
-
"\n",
|
859 |
-
" return batch\n",
|
860 |
-
"\n",
|
861 |
-
"results = common_voice_test.map(map_to_result)\n"
|
862 |
-
]
|
863 |
-
},
|
864 |
-
{
|
865 |
-
"cell_type": "code",
|
866 |
-
"execution_count": 16,
|
867 |
-
"metadata": {
|
868 |
-
"ExecuteTime": {
|
869 |
-
"end_time": "2021-03-17T11:17:11.951524Z",
|
870 |
-
"start_time": "2021-03-17T11:17:08.856552Z"
|
871 |
-
}
|
872 |
-
},
|
873 |
-
"outputs": [
|
874 |
-
{
|
875 |
-
"name": "stdout",
|
876 |
-
"output_type": "stream",
|
877 |
-
"text": [
|
878 |
-
"Test WER: 0.396\n"
|
879 |
-
]
|
880 |
-
}
|
881 |
-
],
|
882 |
-
"source": [
|
883 |
-
"def compute_metrics(pred):\n",
|
884 |
-
" pred_logits = pred.predictions\n",
|
885 |
-
" pred_ids = np.argmax(pred_logits, axis=-1)\n",
|
886 |
-
"\n",
|
887 |
-
" pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
|
888 |
-
"\n",
|
889 |
-
" pred_str = processor.batch_decode(pred_ids)\n",
|
890 |
-
" # we do not want to group tokens when computing the metrics\n",
|
891 |
-
" label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
|
892 |
-
"\n",
|
893 |
-
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
|
894 |
-
"\n",
|
895 |
-
" return {\"wer\": wer}\n",
|
896 |
-
"\n",
|
897 |
-
"wer_metric = load_metric(\"wer\")\n",
|
898 |
-
"\n",
|
899 |
-
"print(\"Test WER: {:.3f}\".format(wer_metric.compute(predictions=results[\"pred_str\"], references= [item.lower() for item in common_voice_test_transcription['sentence']])))"
|
900 |
-
]
|
901 |
-
},
|
902 |
-
{
|
903 |
-
"cell_type": "code",
|
904 |
-
"execution_count": null,
|
905 |
-
"metadata": {},
|
906 |
-
"outputs": [],
|
907 |
-
"source": []
|
908 |
-
}
|
909 |
-
],
|
910 |
-
"metadata": {
|
911 |
-
"kernelspec": {
|
912 |
-
"display_name": "cuda110",
|
913 |
-
"language": "python",
|
914 |
-
"name": "cuda110"
|
915 |
-
},
|
916 |
-
"language_info": {
|
917 |
-
"codemirror_mode": {
|
918 |
-
"name": "ipython",
|
919 |
-
"version": 3
|
920 |
-
},
|
921 |
-
"file_extension": ".py",
|
922 |
-
"mimetype": "text/x-python",
|
923 |
-
"name": "python",
|
924 |
-
"nbconvert_exporter": "python",
|
925 |
-
"pygments_lexer": "ipython3",
|
926 |
-
"version": "3.8.5"
|
927 |
-
},
|
928 |
-
"varInspector": {
|
929 |
-
"cols": {
|
930 |
-
"lenName": 16,
|
931 |
-
"lenType": 16,
|
932 |
-
"lenVar": 40
|
933 |
-
},
|
934 |
-
"kernels_config": {
|
935 |
-
"python": {
|
936 |
-
"delete_cmd_postfix": "",
|
937 |
-
"delete_cmd_prefix": "del ",
|
938 |
-
"library": "var_list.py",
|
939 |
-
"varRefreshCmd": "print(var_dic_list())"
|
940 |
-
},
|
941 |
-
"r": {
|
942 |
-
"delete_cmd_postfix": ") ",
|
943 |
-
"delete_cmd_prefix": "rm(",
|
944 |
-
"library": "var_list.r",
|
945 |
-
"varRefreshCmd": "cat(var_dic_list()) "
|
946 |
-
}
|
947 |
-
},
|
948 |
-
"types_to_exclude": [
|
949 |
-
"module",
|
950 |
-
"function",
|
951 |
-
"builtin_function_or_method",
|
952 |
-
"instance",
|
953 |
-
"_Feature"
|
954 |
-
],
|
955 |
-
"window_display": false
|
956 |
-
}
|
957 |
-
},
|
958 |
-
"nbformat": 4,
|
959 |
-
"nbformat_minor": 4
|
960 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/Fine_Tune_XLSR_Wav2Vec2_on_Greek_ASR_with_🤗_Transformers-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
README.md
CHANGED
@@ -22,6 +22,9 @@ model-index:
|
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
value: 10.497628
|
|
|
|
|
|
|
25 |
---
|
26 |
|
27 |
# Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model
|
@@ -204,6 +207,7 @@ Instructions and code to replicate the process are provided in the Fine_Tune_XLS
|
|
204 |
| ----------- | ----------- |
|
205 |
| Training Loss | 0.0545 |
|
206 |
| Validation Loss | 0.1661 |
|
|
|
207 |
| WER on CommonVoice Test (%) *| 10.4976 |
|
208 |
* Reference transcripts were lower-cased and striped of punctuation and special characters.
|
209 |
|
|
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
value: 10.497628
|
25 |
+
- name: Test CER
|
26 |
+
type: cer
|
27 |
+
value: 2.875260
|
28 |
---
|
29 |
|
30 |
# Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model
|
|
|
207 |
| ----------- | ----------- |
|
208 |
| Training Loss | 0.0545 |
|
209 |
| Validation Loss | 0.1661 |
|
210 |
+
| CER on CommonVoice Test (%) *| 2.8753 |
|
211 |
| WER on CommonVoice Test (%) *| 10.4976 |
|
212 |
* Reference transcripts were lower-cased and striped of punctuation and special characters.
|
213 |
|
config.json
CHANGED
@@ -36,7 +36,7 @@
|
|
36 |
2
|
37 |
],
|
38 |
"ctc_loss_reduction": "mean",
|
39 |
-
"ctc_zero_infinity":
|
40 |
"do_stable_layer_norm": true,
|
41 |
"eos_token_id": 2,
|
42 |
"feat_extract_activation": "gelu",
|
@@ -70,7 +70,7 @@
|
|
70 |
"num_conv_pos_embeddings": 128,
|
71 |
"num_feat_extract_layers": 7,
|
72 |
"num_hidden_layers": 24,
|
73 |
-
"pad_token_id":
|
74 |
"transformers_version": "4.4.0.dev0",
|
75 |
-
"vocab_size":
|
76 |
}
|
|
|
36 |
2
|
37 |
],
|
38 |
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
"do_stable_layer_norm": true,
|
41 |
"eos_token_id": 2,
|
42 |
"feat_extract_activation": "gelu",
|
|
|
70 |
"num_conv_pos_embeddings": 128,
|
71 |
"num_feat_extract_layers": 7,
|
72 |
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 54,
|
74 |
"transformers_version": "4.4.0.dev0",
|
75 |
+
"vocab_size": 55
|
76 |
}
|