New version
Browse files- __init__.py +66 -5
- activation.py +1 -1
- attention.py +5 -5
- embeddings.py +3 -3
- initialization.py +3 -3
- layers.py +6 -6
- loss.py +30 -0
- mlp.py +4 -4
- model.py +1684 -0
- normalization.py +1 -1
- options.py +6 -6
__init__.py
CHANGED
@@ -1,7 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
-
import os
|
3 |
-
import sys
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .attention import (
|
2 |
+
BertAlibiUnpadAttention,
|
3 |
+
BertAlibiUnpadSelfAttention,
|
4 |
+
BertSelfOutput,
|
5 |
+
FlexBertPaddedAttention,
|
6 |
+
FlexBertUnpadAttention,
|
7 |
+
)
|
8 |
+
from .embeddings import (
|
9 |
+
BertAlibiEmbeddings,
|
10 |
+
FlexBertAbsoluteEmbeddings,
|
11 |
+
FlexBertSansPositionEmbeddings,
|
12 |
+
)
|
13 |
+
from .layers import (
|
14 |
+
BertAlibiEncoder,
|
15 |
+
BertAlibiLayer,
|
16 |
+
BertResidualGLU,
|
17 |
+
FlexBertPaddedPreNormLayer,
|
18 |
+
FlexBertPaddedPostNormLayer,
|
19 |
+
FlexBertUnpadPostNormLayer,
|
20 |
+
FlexBertUnpadPreNormLayer,
|
21 |
+
)
|
22 |
+
from .model import (
|
23 |
+
BertLMPredictionHead,
|
24 |
+
BertModel,
|
25 |
+
BertForMaskedLM,
|
26 |
+
BertForSequenceClassification,
|
27 |
+
BertForMultipleChoice,
|
28 |
+
BertOnlyMLMHead,
|
29 |
+
BertOnlyNSPHead,
|
30 |
+
BertPooler,
|
31 |
+
BertPredictionHeadTransform,
|
32 |
+
FlexBertModel,
|
33 |
+
FlexBertForMaskedLM,
|
34 |
+
FlexBertForSequenceClassification,
|
35 |
+
FlexBertForMultipleChoice,
|
36 |
+
)
|
37 |
|
|
|
|
|
38 |
|
39 |
+
__all__ = [
|
40 |
+
"BertAlibiEmbeddings",
|
41 |
+
"BertAlibiEncoder",
|
42 |
+
"BertForMaskedLM",
|
43 |
+
"BertForSequenceClassification",
|
44 |
+
"BertForMultipleChoice",
|
45 |
+
"BertResidualGLU",
|
46 |
+
"BertAlibiLayer",
|
47 |
+
"BertLMPredictionHead",
|
48 |
+
"BertModel",
|
49 |
+
"BertOnlyMLMHead",
|
50 |
+
"BertOnlyNSPHead",
|
51 |
+
"BertPooler",
|
52 |
+
"BertPredictionHeadTransform",
|
53 |
+
"BertSelfOutput",
|
54 |
+
"BertAlibiUnpadAttention",
|
55 |
+
"BertAlibiUnpadSelfAttention",
|
56 |
+
"FlexBertPaddedAttention",
|
57 |
+
"FlexBertUnpadAttention",
|
58 |
+
"FlexBertAbsoluteEmbeddings",
|
59 |
+
"FlexBertSansPositionEmbeddings",
|
60 |
+
"FlexBertPaddedPreNormLayer",
|
61 |
+
"FlexBertPaddedPostNormLayer",
|
62 |
+
"FlexBertUnpadPostNormLayer",
|
63 |
+
"FlexBertUnpadPreNormLayer",
|
64 |
+
"FlexBertModel",
|
65 |
+
"FlexBertForMaskedLM",
|
66 |
+
"FlexBertForSequenceClassification",
|
67 |
+
"FlexBertForMultipleChoice",
|
68 |
+
]
|
activation.py
CHANGED
@@ -7,7 +7,7 @@
|
|
7 |
from collections import OrderedDict
|
8 |
from typing import Union
|
9 |
import torch.nn as nn
|
10 |
-
from configuration_bert import FlexBertConfig
|
11 |
|
12 |
|
13 |
class ClassInstantier(OrderedDict):
|
|
|
7 |
from collections import OrderedDict
|
8 |
from typing import Union
|
9 |
import torch.nn as nn
|
10 |
+
from .configuration_bert import FlexBertConfig
|
11 |
|
12 |
|
13 |
class ClassInstantier(OrderedDict):
|
attention.py
CHANGED
@@ -22,10 +22,10 @@ import logging
|
|
22 |
import math
|
23 |
|
24 |
import bert_padding
|
25 |
-
from configuration_bert import FlexBertConfig, maybe_add_padding
|
26 |
-
from normalization import get_norm_layer
|
27 |
-
from initialization import ModuleType, init_weights
|
28 |
-
import utils # noqa: F401
|
29 |
|
30 |
IMPL_USE_FLASH3 = False
|
31 |
IMPL_USE_FLASH2 = False
|
@@ -48,7 +48,7 @@ except ImportError:
|
|
48 |
|
49 |
try:
|
50 |
from flash_attn.layers.rotary import RotaryEmbedding # type: ignore
|
51 |
-
from rotary import UnpaddedRotaryEmbedding # type: ignore
|
52 |
|
53 |
except ImportError:
|
54 |
RotaryEmbedding = None
|
|
|
22 |
import math
|
23 |
|
24 |
import bert_padding
|
25 |
+
from .configuration_bert import FlexBertConfig, maybe_add_padding
|
26 |
+
from .normalization import get_norm_layer
|
27 |
+
from .initialization import ModuleType, init_weights
|
28 |
+
import src.utils # noqa: F401
|
29 |
|
30 |
IMPL_USE_FLASH3 = False
|
31 |
IMPL_USE_FLASH2 = False
|
|
|
48 |
|
49 |
try:
|
50 |
from flash_attn.layers.rotary import RotaryEmbedding # type: ignore
|
51 |
+
from .rotary import UnpaddedRotaryEmbedding # type: ignore
|
52 |
|
53 |
except ImportError:
|
54 |
RotaryEmbedding = None
|
embeddings.py
CHANGED
@@ -16,9 +16,9 @@ import torch
|
|
16 |
import torch.nn as nn
|
17 |
from typing import Optional
|
18 |
|
19 |
-
from configuration_bert import FlexBertConfig
|
20 |
-
from normalization import get_norm_layer
|
21 |
-
from initialization import ModuleType, init_weights
|
22 |
|
23 |
|
24 |
class BertAlibiEmbeddings(nn.Module):
|
|
|
16 |
import torch.nn as nn
|
17 |
from typing import Optional
|
18 |
|
19 |
+
from .configuration_bert import FlexBertConfig
|
20 |
+
from .normalization import get_norm_layer
|
21 |
+
from .initialization import ModuleType, init_weights
|
22 |
|
23 |
|
24 |
class BertAlibiEmbeddings(nn.Module):
|
initialization.py
CHANGED
@@ -14,10 +14,10 @@ from typing import Optional, Union
|
|
14 |
import torch
|
15 |
import torch.nn as nn
|
16 |
|
17 |
-
from utils import StrEnum
|
18 |
|
19 |
-
from configuration_bert import FlexBertConfig
|
20 |
-
from normalization import RMSNorm
|
21 |
|
22 |
__all__ = ["init_weights", "ModuleType", "InitFnType"]
|
23 |
|
|
|
14 |
import torch
|
15 |
import torch.nn as nn
|
16 |
|
17 |
+
from src.utils import StrEnum
|
18 |
|
19 |
+
from .configuration_bert import FlexBertConfig
|
20 |
+
from .normalization import RMSNorm
|
21 |
|
22 |
__all__ = ["init_weights", "ModuleType", "InitFnType"]
|
23 |
|
layers.py
CHANGED
@@ -22,12 +22,12 @@ import torch.nn as nn
|
|
22 |
|
23 |
import bert_padding
|
24 |
|
25 |
-
from activation import get_act_fn
|
26 |
-
from attention import FlexBertAttentionBase, BertAlibiUnpadAttention, get_attention_layer
|
27 |
-
from mlp import FlexBertMLPBase, BertResidualGLU, get_mlp_layer
|
28 |
-
from configuration_bert import FlexBertConfig, maybe_add_padding
|
29 |
-
from normalization import get_norm_layer
|
30 |
-
from initialization import ModuleType, init_weights
|
31 |
|
32 |
|
33 |
class BertAlibiLayer(nn.Module):
|
|
|
22 |
|
23 |
import bert_padding
|
24 |
|
25 |
+
from .activation import get_act_fn
|
26 |
+
from .attention import FlexBertAttentionBase, BertAlibiUnpadAttention, get_attention_layer
|
27 |
+
from .mlp import FlexBertMLPBase, BertResidualGLU, get_mlp_layer
|
28 |
+
from .configuration_bert import FlexBertConfig, maybe_add_padding
|
29 |
+
from .normalization import get_norm_layer
|
30 |
+
from .initialization import ModuleType, init_weights
|
31 |
|
32 |
|
33 |
class BertAlibiLayer(nn.Module):
|
loss.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
import inspect
|
5 |
+
import torch.nn as nn
|
6 |
+
from .configuration_bert import FlexBertConfig
|
7 |
+
|
8 |
+
try:
|
9 |
+
from flash_attn.losses.cross_entropy import CrossEntropyLoss
|
10 |
+
except ImportError:
|
11 |
+
CrossEntropyLoss = None
|
12 |
+
|
13 |
+
LOSS2CLS = {
|
14 |
+
"cross_entropy": nn.CrossEntropyLoss,
|
15 |
+
"binary_cross_entropy": nn.BCEWithLogitsLoss,
|
16 |
+
"mean_squared_error": nn.MSELoss,
|
17 |
+
}
|
18 |
+
|
19 |
+
if CrossEntropyLoss is not None:
|
20 |
+
LOSS2CLS["fa_cross_entropy"] = CrossEntropyLoss
|
21 |
+
|
22 |
+
|
23 |
+
def get_loss_fn(config: FlexBertConfig) -> nn.Module:
|
24 |
+
try:
|
25 |
+
loss_class = LOSS2CLS[config.loss_function]
|
26 |
+
signature = inspect.signature(loss_class)
|
27 |
+
loss_kwargs = {k: v for k, v in config.loss_kwargs.items() if k in signature.parameters}
|
28 |
+
return loss_class(**loss_kwargs)
|
29 |
+
except KeyError:
|
30 |
+
raise ValueError(f"Invalid loss function type: {config.loss_function}, must be one of {LOSS2CLS.keys()}.")
|
mlp.py
CHANGED
@@ -16,10 +16,10 @@ from typing import Optional
|
|
16 |
import torch
|
17 |
import torch.nn as nn
|
18 |
|
19 |
-
from configuration_bert import FlexBertConfig
|
20 |
-
from activation import get_act_fn
|
21 |
-
from normalization import get_norm_layer
|
22 |
-
from initialization import ModuleType, init_weights
|
23 |
|
24 |
|
25 |
class BertResidualGLU(nn.Module):
|
|
|
16 |
import torch
|
17 |
import torch.nn as nn
|
18 |
|
19 |
+
from .configuration_bert import FlexBertConfig
|
20 |
+
from .activation import get_act_fn
|
21 |
+
from .normalization import get_norm_layer
|
22 |
+
from .initialization import ModuleType, init_weights
|
23 |
|
24 |
|
25 |
class BertResidualGLU(nn.Module):
|
model.py
ADDED
@@ -0,0 +1,1684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# RMSNorm Implementation: Copyright Meta (from their Llama RMSNorm implementation)
|
5 |
+
# License: LLAMA 2 COMMUNITY LICENSE AGREEMENT
|
6 |
+
|
7 |
+
# Copyright 2022 Jonas Geiping
|
8 |
+
# License: MIT
|
9 |
+
|
10 |
+
# Copyright 2022 MosaicML Examples authors
|
11 |
+
# SPDX-License-Identifier: Apache-2.0
|
12 |
+
|
13 |
+
# Copyright 2023 MosaicML Examples authors
|
14 |
+
# SPDX-License-Identifier: Apache-2.0
|
15 |
+
|
16 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
17 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
18 |
+
# Copyright (c) 2023, Tri Dao.
|
19 |
+
|
20 |
+
"""Implements Mosaic BERT, with an eye towards the Hugging Face API.
|
21 |
+
|
22 |
+
Mosaic BERT improves performance over Hugging Face BERT through the following:
|
23 |
+
|
24 |
+
1. ALiBi. This architectural change removes positional embeddings and instead encodes positional
|
25 |
+
information through attention biases based on query-key position distance. It improves the effectiveness
|
26 |
+
of training with shorter sequence lengths by enabling extrapolation to longer sequences.
|
27 |
+
|
28 |
+
2. Gated Linear Units (GLU). This architectural change replaces the FFN component of the BERT layer
|
29 |
+
to improve overall expressiveness, providing better convergence properties.
|
30 |
+
|
31 |
+
3. Flash Attention. The MosaicBERT's self-attention layer makes use of Flash Attention, which dramatically
|
32 |
+
improves the speed of self-attention. Our implementation utilizes a bleeding edge implementation that
|
33 |
+
supports attention biases, which allows us to use Flash Attention with ALiBi.
|
34 |
+
|
35 |
+
4. Unpadding. Padding is often used to simplify batching across sequences of different lengths. Standard BERT
|
36 |
+
implementations waste computation on padded tokens. MosaicBERT internally unpads to reduce unnecessary computation
|
37 |
+
and improve speed. It does this without changing how the user interfaces with the model, thereby
|
38 |
+
preserving the simple API of standard implementations.
|
39 |
+
|
40 |
+
|
41 |
+
Currently, MosaicBERT is available for masked language modeling :class:`BertForMaskedLM` and sequence
|
42 |
+
classification :class:`BertForSequenceClassification`. We aim to expand this catalogue in future releases.
|
43 |
+
|
44 |
+
See :file:`./mosaic_bert.py` for utilities to simplify working with MosaicBERT in Composer, and for example usage
|
45 |
+
of the core Mosaic BERT classes.
|
46 |
+
"""
|
47 |
+
|
48 |
+
import logging
|
49 |
+
import os
|
50 |
+
import sys
|
51 |
+
import warnings
|
52 |
+
from dataclasses import dataclass
|
53 |
+
from typing import List, Optional, Tuple, Union
|
54 |
+
|
55 |
+
# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
|
56 |
+
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
57 |
+
|
58 |
+
import torch
|
59 |
+
import torch.nn as nn
|
60 |
+
from einops import rearrange
|
61 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
62 |
+
from transformers.modeling_outputs import (
|
63 |
+
MaskedLMOutput,
|
64 |
+
ModelOutput,
|
65 |
+
MultipleChoiceModelOutput,
|
66 |
+
SequenceClassifierOutput,
|
67 |
+
)
|
68 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel
|
69 |
+
|
70 |
+
from bert_padding import index_put_first_axis
|
71 |
+
|
72 |
+
from src.bert_layers.activation import get_act_fn
|
73 |
+
from src.bert_layers.attention import (
|
74 |
+
FlexBertPaddedAttention,
|
75 |
+
FlexBertPaddedParallelAttention,
|
76 |
+
FlexBertPaddedRopeAttention,
|
77 |
+
FlexBertPaddedRopeParallelAttention,
|
78 |
+
FlexBertUnpadAttention,
|
79 |
+
FlexBertUnpadParallelAttention,
|
80 |
+
FlexBertUnpadRopeAttention,
|
81 |
+
FlexBertUnpadRopeParallelAttention,
|
82 |
+
)
|
83 |
+
from src.bert_layers.configuration_bert import FlexBertConfig
|
84 |
+
from src.bert_layers.embeddings import (
|
85 |
+
BertAlibiEmbeddings,
|
86 |
+
FlexBertAbsoluteEmbeddings,
|
87 |
+
FlexBertCompiledSansPositionEmbeddings,
|
88 |
+
FlexBertSansPositionEmbeddings,
|
89 |
+
get_embedding_layer,
|
90 |
+
)
|
91 |
+
from src.bert_layers.initialization import (
|
92 |
+
ModuleType,
|
93 |
+
TileLinear,
|
94 |
+
TileMode,
|
95 |
+
init_weights,
|
96 |
+
tile_embedding,
|
97 |
+
tile_linear,
|
98 |
+
tile_norm,
|
99 |
+
)
|
100 |
+
from src.bert_layers.layers import (
|
101 |
+
BertAlibiEncoder,
|
102 |
+
BertPooler,
|
103 |
+
BertPredictionHeadTransform,
|
104 |
+
FlexBertCompileUnpadPreNormLayer,
|
105 |
+
FlexBertPaddedEncoder,
|
106 |
+
FlexBertPaddedParallelPreNormLayer,
|
107 |
+
FlexBertPaddedPostNormLayer,
|
108 |
+
FlexBertPaddedPreNormLayer,
|
109 |
+
FlexBertUnpadEncoder,
|
110 |
+
FlexBertUnpadParallelPreNormLayer,
|
111 |
+
FlexBertUnpadPostNormLayer,
|
112 |
+
FlexBertUnpadPreNormLayer,
|
113 |
+
get_encoder_layer,
|
114 |
+
)
|
115 |
+
from src.bert_layers.loss import get_loss_fn
|
116 |
+
from src.bert_layers.mlp import FlexBertGLU, FlexBertMLP, FlexBertParallelGLU
|
117 |
+
from src.bert_layers.normalization import get_norm_layer
|
118 |
+
from src.bert_layers.padding import pad_input, unpad_input
|
119 |
+
|
120 |
+
logger = logging.getLogger(__name__)
|
121 |
+
|
122 |
+
|
123 |
+
def _count_parameters(model: nn.Module, trainable: bool = True) -> int:
|
124 |
+
if trainable:
|
125 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
126 |
+
else:
|
127 |
+
return sum(p.numel() for p in model.parameters())
|
128 |
+
|
129 |
+
|
130 |
+
class BertModel(BertPreTrainedModel):
|
131 |
+
"""Overall BERT model.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
config: a BertConfig class instance with the configuration to build a new model
|
135 |
+
|
136 |
+
Inputs:
|
137 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
138 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
139 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
140 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
141 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
142 |
+
a `sentence B` token (see BERT paper for more details).
|
143 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
144 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
145 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
146 |
+
a batch has varying length sentences.
|
147 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
148 |
+
|
149 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
150 |
+
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
151 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
152 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
153 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
154 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
155 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
156 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
157 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
158 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
159 |
+
|
160 |
+
Example usage:
|
161 |
+
```python
|
162 |
+
# Already been converted into WordPiece token ids
|
163 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
164 |
+
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
165 |
+
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
166 |
+
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
167 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
168 |
+
model = BertModel(config=config)
|
169 |
+
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
170 |
+
```
|
171 |
+
"""
|
172 |
+
|
173 |
+
def __init__(
|
174 |
+
self,
|
175 |
+
config,
|
176 |
+
add_pooling_layer: bool = True,
|
177 |
+
):
|
178 |
+
super(BertModel, self).__init__(config)
|
179 |
+
self.embeddings = BertAlibiEmbeddings(config)
|
180 |
+
self.encoder = BertAlibiEncoder(config)
|
181 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
182 |
+
self.post_init()
|
183 |
+
|
184 |
+
def get_input_embeddings(self):
|
185 |
+
return self.embeddings.word_embeddings
|
186 |
+
|
187 |
+
def set_input_embeddings(self, value):
|
188 |
+
self.embeddings.word_embeddings = value
|
189 |
+
|
190 |
+
def forward(
|
191 |
+
self,
|
192 |
+
input_ids: torch.Tensor,
|
193 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
195 |
+
position_ids: Optional[torch.Tensor] = None,
|
196 |
+
output_all_encoded_layers: Optional[bool] = False,
|
197 |
+
masked_tokens_mask: Optional[torch.Tensor] = None,
|
198 |
+
**kwargs,
|
199 |
+
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
|
200 |
+
if attention_mask is None:
|
201 |
+
attention_mask = torch.ones_like(input_ids)
|
202 |
+
if token_type_ids is None:
|
203 |
+
token_type_ids = torch.zeros_like(input_ids)
|
204 |
+
|
205 |
+
embedding_output = self.embeddings(input_ids, token_type_ids, position_ids)
|
206 |
+
|
207 |
+
subset_mask = []
|
208 |
+
first_col_mask = []
|
209 |
+
|
210 |
+
if masked_tokens_mask is None:
|
211 |
+
subset_mask = None
|
212 |
+
else:
|
213 |
+
first_col_mask = torch.zeros_like(masked_tokens_mask)
|
214 |
+
first_col_mask[:, 0] = True
|
215 |
+
subset_mask = masked_tokens_mask | first_col_mask
|
216 |
+
|
217 |
+
encoder_outputs = self.encoder(
|
218 |
+
embedding_output,
|
219 |
+
attention_mask,
|
220 |
+
output_all_encoded_layers=output_all_encoded_layers,
|
221 |
+
subset_mask=subset_mask,
|
222 |
+
)
|
223 |
+
|
224 |
+
if masked_tokens_mask is None:
|
225 |
+
sequence_output = encoder_outputs[-1]
|
226 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
227 |
+
else:
|
228 |
+
# TD [2022-03-01]: the indexing here is very tricky.
|
229 |
+
attention_mask_bool = attention_mask.bool()
|
230 |
+
subset_idx = subset_mask[attention_mask_bool] # type: ignore
|
231 |
+
sequence_output = encoder_outputs[-1][masked_tokens_mask[attention_mask_bool][subset_idx]]
|
232 |
+
if self.pooler is not None:
|
233 |
+
pool_input = encoder_outputs[-1][first_col_mask[attention_mask_bool][subset_idx]]
|
234 |
+
pooled_output = self.pooler(pool_input, pool=False)
|
235 |
+
else:
|
236 |
+
pooled_output = None
|
237 |
+
|
238 |
+
if not output_all_encoded_layers:
|
239 |
+
encoder_outputs = sequence_output
|
240 |
+
|
241 |
+
if self.pooler is not None:
|
242 |
+
return encoder_outputs, pooled_output
|
243 |
+
|
244 |
+
return encoder_outputs, None
|
245 |
+
|
246 |
+
|
247 |
+
###################
|
248 |
+
# Bert Heads
|
249 |
+
###################
|
250 |
+
class BertLMPredictionHead(nn.Module):
|
251 |
+
def __init__(self, config, bert_model_embedding_weights):
|
252 |
+
super().__init__()
|
253 |
+
self.transform = BertPredictionHeadTransform(config)
|
254 |
+
# The output weights are the same as the input embeddings, but there is
|
255 |
+
# an output-only bias for each token.
|
256 |
+
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0))
|
257 |
+
self.decoder.weight = bert_model_embedding_weights
|
258 |
+
|
259 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
260 |
+
hidden_states = self.transform(hidden_states)
|
261 |
+
hidden_states = self.decoder(hidden_states)
|
262 |
+
return hidden_states
|
263 |
+
|
264 |
+
|
265 |
+
class BertOnlyMLMHead(nn.Module):
|
266 |
+
def __init__(self, config, bert_model_embedding_weights):
|
267 |
+
super().__init__()
|
268 |
+
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
|
269 |
+
|
270 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
271 |
+
prediction_scores = self.predictions(sequence_output)
|
272 |
+
return prediction_scores
|
273 |
+
|
274 |
+
|
275 |
+
class BertOnlyNSPHead(nn.Module):
|
276 |
+
def __init__(self, config):
|
277 |
+
super().__init__()
|
278 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
279 |
+
|
280 |
+
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
|
281 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
282 |
+
return seq_relationship_score
|
283 |
+
|
284 |
+
|
285 |
+
#####################
|
286 |
+
# Various Bert models
|
287 |
+
#####################
|
288 |
+
|
289 |
+
|
290 |
+
class BertForPreTraining(BertPreTrainedModel):
|
291 |
+
# TBD: Coming in Future Commit
|
292 |
+
pass
|
293 |
+
|
294 |
+
|
295 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
296 |
+
# TBD: Coming in Future Commit
|
297 |
+
pass
|
298 |
+
|
299 |
+
|
300 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
301 |
+
def __init__(self, config):
|
302 |
+
super().__init__(config)
|
303 |
+
|
304 |
+
if config.is_decoder:
|
305 |
+
warnings.warn(
|
306 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
307 |
+
"bi-directional self-attention."
|
308 |
+
)
|
309 |
+
|
310 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
311 |
+
self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
|
312 |
+
|
313 |
+
# Initialize weights and apply final processing
|
314 |
+
self.post_init()
|
315 |
+
|
316 |
+
@classmethod
|
317 |
+
def from_composer(
|
318 |
+
cls,
|
319 |
+
pretrained_checkpoint,
|
320 |
+
state_dict=None,
|
321 |
+
cache_dir=None,
|
322 |
+
from_tf=False,
|
323 |
+
config=None,
|
324 |
+
*inputs,
|
325 |
+
**kwargs,
|
326 |
+
):
|
327 |
+
"""Load from pre-trained."""
|
328 |
+
model = cls(config, *inputs, **kwargs)
|
329 |
+
if from_tf:
|
330 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
331 |
+
|
332 |
+
state_dict = torch.load(pretrained_checkpoint)
|
333 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
334 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
335 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
336 |
+
|
337 |
+
if len(missing_keys) > 0:
|
338 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
339 |
+
if len(unexpected_keys) > 0:
|
340 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
341 |
+
|
342 |
+
return model
|
343 |
+
|
344 |
+
def get_output_embeddings(self):
|
345 |
+
return self.cls.predictions.decoder
|
346 |
+
|
347 |
+
def set_output_embeddings(self, new_embeddings):
|
348 |
+
self.cls.predictions.decoder = new_embeddings
|
349 |
+
|
350 |
+
def forward(
|
351 |
+
self,
|
352 |
+
input_ids: Optional[torch.Tensor] = None,
|
353 |
+
attention_mask: Optional[torch.Tensor] = None,
|
354 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
355 |
+
position_ids: Optional[torch.Tensor] = None,
|
356 |
+
head_mask: Optional[torch.Tensor] = None,
|
357 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
358 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
359 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
360 |
+
labels: Optional[torch.Tensor] = None,
|
361 |
+
output_attentions: Optional[bool] = None,
|
362 |
+
output_hidden_states: Optional[bool] = None,
|
363 |
+
return_dict: Optional[bool] = None,
|
364 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
365 |
+
# labels should be a `torch.LongTensor` of shape
|
366 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
367 |
+
# masked language modeling loss.
|
368 |
+
#
|
369 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
370 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
371 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
372 |
+
# ..., config.vocab_size]`
|
373 |
+
#
|
374 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
375 |
+
# seqlen) dimensions are flattened
|
376 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
377 |
+
raise ValueError("Must specify either input_ids or input_embeds!")
|
378 |
+
|
379 |
+
if labels is None:
|
380 |
+
masked_tokens_mask = None
|
381 |
+
else:
|
382 |
+
masked_tokens_mask = labels > 0
|
383 |
+
|
384 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
385 |
+
|
386 |
+
outputs = self.bert(
|
387 |
+
input_ids,
|
388 |
+
attention_mask=attention_mask,
|
389 |
+
token_type_ids=token_type_ids,
|
390 |
+
position_ids=position_ids,
|
391 |
+
head_mask=head_mask,
|
392 |
+
inputs_embeds=inputs_embeds,
|
393 |
+
encoder_hidden_states=encoder_hidden_states,
|
394 |
+
encoder_attention_mask=encoder_attention_mask,
|
395 |
+
output_attentions=output_attentions,
|
396 |
+
output_hidden_states=output_hidden_states,
|
397 |
+
return_dict=return_dict,
|
398 |
+
masked_tokens_mask=masked_tokens_mask,
|
399 |
+
)
|
400 |
+
|
401 |
+
sequence_output = outputs[0]
|
402 |
+
prediction_scores = self.cls(sequence_output)
|
403 |
+
|
404 |
+
loss = None
|
405 |
+
if labels is not None:
|
406 |
+
# Compute loss
|
407 |
+
loss_fct = nn.CrossEntropyLoss()
|
408 |
+
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
|
409 |
+
loss = loss_fct(prediction_scores, labels.flatten()[masked_token_idx])
|
410 |
+
|
411 |
+
assert input_ids is not None, "Coding error; please open an issue"
|
412 |
+
batch, seqlen = input_ids.shape[:2]
|
413 |
+
prediction_scores = rearrange(
|
414 |
+
index_put_first_axis(prediction_scores, masked_token_idx, batch * seqlen),
|
415 |
+
"(b s) d -> b s d",
|
416 |
+
b=batch,
|
417 |
+
)
|
418 |
+
|
419 |
+
if not return_dict:
|
420 |
+
output = (prediction_scores,) + outputs[2:]
|
421 |
+
return ((loss,) + output) if loss is not None else output
|
422 |
+
|
423 |
+
return MaskedLMOutput(
|
424 |
+
loss=loss,
|
425 |
+
logits=prediction_scores,
|
426 |
+
hidden_states=None,
|
427 |
+
attentions=None,
|
428 |
+
)
|
429 |
+
|
430 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
|
431 |
+
input_shape = input_ids.shape
|
432 |
+
effective_batch_size = input_shape[0]
|
433 |
+
|
434 |
+
# add a dummy token
|
435 |
+
if self.config.pad_token_id is None:
|
436 |
+
raise ValueError("The PAD token should be defined for generation")
|
437 |
+
|
438 |
+
attention_mask = torch.cat(
|
439 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
|
440 |
+
dim=-1,
|
441 |
+
)
|
442 |
+
dummy_token = torch.full(
|
443 |
+
(effective_batch_size, 1),
|
444 |
+
self.config.pad_token_id,
|
445 |
+
dtype=torch.long,
|
446 |
+
device=input_ids.device,
|
447 |
+
)
|
448 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
449 |
+
|
450 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
451 |
+
|
452 |
+
|
453 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
454 |
+
# TBD: Push in future commit
|
455 |
+
pass
|
456 |
+
|
457 |
+
|
458 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
459 |
+
"""Bert Model transformer with a sequence classification/regression head.
|
460 |
+
|
461 |
+
This head is just a linear layer on top of the pooled output. Used for,
|
462 |
+
e.g., GLUE tasks.
|
463 |
+
"""
|
464 |
+
|
465 |
+
def __init__(self, config):
|
466 |
+
super().__init__(config)
|
467 |
+
self.num_labels = config.num_labels
|
468 |
+
self.config = config
|
469 |
+
|
470 |
+
self.bert = BertModel(config)
|
471 |
+
classifier_dropout = (
|
472 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
473 |
+
)
|
474 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
475 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
476 |
+
|
477 |
+
# Initialize weights and apply final processing
|
478 |
+
self.post_init()
|
479 |
+
|
480 |
+
@classmethod
|
481 |
+
def from_composer(
|
482 |
+
cls,
|
483 |
+
pretrained_checkpoint,
|
484 |
+
state_dict=None,
|
485 |
+
cache_dir=None,
|
486 |
+
from_tf=False,
|
487 |
+
config=None,
|
488 |
+
*inputs,
|
489 |
+
**kwargs,
|
490 |
+
):
|
491 |
+
"""Load from pre-trained."""
|
492 |
+
model = cls(config, *inputs, **kwargs)
|
493 |
+
if from_tf:
|
494 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
495 |
+
|
496 |
+
state_dict = torch.load(pretrained_checkpoint)
|
497 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
498 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
499 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
500 |
+
|
501 |
+
if len(missing_keys) > 0:
|
502 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
503 |
+
if len(unexpected_keys) > 0:
|
504 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
505 |
+
|
506 |
+
return model
|
507 |
+
|
508 |
+
def forward(
|
509 |
+
self,
|
510 |
+
input_ids: Optional[torch.Tensor] = None,
|
511 |
+
attention_mask: Optional[torch.Tensor] = None,
|
512 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
513 |
+
position_ids: Optional[torch.Tensor] = None,
|
514 |
+
head_mask: Optional[torch.Tensor] = None,
|
515 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
516 |
+
labels: Optional[torch.Tensor] = None,
|
517 |
+
output_attentions: Optional[bool] = None,
|
518 |
+
output_hidden_states: Optional[bool] = None,
|
519 |
+
return_dict: Optional[bool] = None,
|
520 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
521 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
522 |
+
# Labels for computing the sequence classification/regression loss.
|
523 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
524 |
+
# If `config.num_labels == 1` a regression loss is computed
|
525 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
526 |
+
# is computed (cross-entropy).
|
527 |
+
|
528 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
529 |
+
|
530 |
+
outputs = self.bert(
|
531 |
+
input_ids,
|
532 |
+
attention_mask=attention_mask,
|
533 |
+
token_type_ids=token_type_ids,
|
534 |
+
position_ids=position_ids,
|
535 |
+
head_mask=head_mask,
|
536 |
+
inputs_embeds=inputs_embeds,
|
537 |
+
output_attentions=output_attentions,
|
538 |
+
output_hidden_states=output_hidden_states,
|
539 |
+
return_dict=return_dict,
|
540 |
+
)
|
541 |
+
|
542 |
+
pooled_output = outputs[1]
|
543 |
+
|
544 |
+
pooled_output = self.dropout(pooled_output)
|
545 |
+
logits = self.classifier(pooled_output)
|
546 |
+
|
547 |
+
loss = None
|
548 |
+
if labels is not None:
|
549 |
+
# Compute loss
|
550 |
+
if self.config.problem_type is None:
|
551 |
+
if self.num_labels == 1:
|
552 |
+
self.config.problem_type = "regression"
|
553 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
554 |
+
self.config.problem_type = "single_label_classification"
|
555 |
+
else:
|
556 |
+
self.config.problem_type = "multi_label_classification"
|
557 |
+
|
558 |
+
if self.config.problem_type == "regression":
|
559 |
+
loss_fct = nn.MSELoss()
|
560 |
+
if self.num_labels == 1:
|
561 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
562 |
+
else:
|
563 |
+
loss = loss_fct(logits, labels)
|
564 |
+
elif self.config.problem_type == "single_label_classification":
|
565 |
+
loss_fct = nn.CrossEntropyLoss()
|
566 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
567 |
+
elif self.config.problem_type == "multi_label_classification":
|
568 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
569 |
+
loss = loss_fct(logits, labels)
|
570 |
+
|
571 |
+
if not return_dict:
|
572 |
+
output = (logits,) + outputs[2:]
|
573 |
+
return ((loss,) + output) if loss is not None else output
|
574 |
+
|
575 |
+
return SequenceClassifierOutput(
|
576 |
+
loss=loss,
|
577 |
+
logits=logits,
|
578 |
+
hidden_states=None,
|
579 |
+
attentions=None,
|
580 |
+
)
|
581 |
+
|
582 |
+
|
583 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
584 |
+
"""
|
585 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
586 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
587 |
+
"""
|
588 |
+
|
589 |
+
def __init__(self, config):
|
590 |
+
super().__init__(config)
|
591 |
+
self.num_labels = config.num_labels
|
592 |
+
self.config = config
|
593 |
+
|
594 |
+
self.bert = BertModel(config)
|
595 |
+
classifier_dropout = (
|
596 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
597 |
+
)
|
598 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
599 |
+
|
600 |
+
# In multiple choice tasks, all choices are submitted in a batch, and
|
601 |
+
# we compute a logit for each option independently. The logits are then
|
602 |
+
# normalized in the forward pass to get a probability distribution over
|
603 |
+
# the choices.
|
604 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
605 |
+
|
606 |
+
# Initialize weights and apply final processing
|
607 |
+
self.post_init()
|
608 |
+
|
609 |
+
@classmethod
|
610 |
+
def from_composer(
|
611 |
+
cls,
|
612 |
+
pretrained_checkpoint,
|
613 |
+
state_dict=None,
|
614 |
+
cache_dir=None,
|
615 |
+
from_tf=False,
|
616 |
+
config=None,
|
617 |
+
*inputs,
|
618 |
+
**kwargs,
|
619 |
+
):
|
620 |
+
"""Load from pre-trained."""
|
621 |
+
model = cls(config, *inputs, **kwargs)
|
622 |
+
if from_tf:
|
623 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
624 |
+
|
625 |
+
state_dict = torch.load(pretrained_checkpoint)
|
626 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
627 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
628 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
629 |
+
|
630 |
+
if len(missing_keys) > 0:
|
631 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
632 |
+
if len(unexpected_keys) > 0:
|
633 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
634 |
+
|
635 |
+
return model
|
636 |
+
|
637 |
+
def forward(
|
638 |
+
self,
|
639 |
+
input_ids: Optional[torch.Tensor] = None,
|
640 |
+
attention_mask: Optional[torch.Tensor] = None,
|
641 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
642 |
+
position_ids: Optional[torch.Tensor] = None,
|
643 |
+
head_mask: Optional[torch.Tensor] = None,
|
644 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
645 |
+
labels: Optional[torch.Tensor] = None,
|
646 |
+
output_attentions: Optional[bool] = None,
|
647 |
+
output_hidden_states: Optional[bool] = None,
|
648 |
+
return_dict: Optional[bool] = None,
|
649 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
650 |
+
r"""
|
651 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
652 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
653 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
654 |
+
`input_ids` above)
|
655 |
+
"""
|
656 |
+
|
657 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
658 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
659 |
+
|
660 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
661 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
662 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
663 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
664 |
+
inputs_embeds = (
|
665 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
666 |
+
if inputs_embeds is not None
|
667 |
+
else None
|
668 |
+
)
|
669 |
+
|
670 |
+
outputs = self.bert(
|
671 |
+
input_ids,
|
672 |
+
attention_mask=attention_mask,
|
673 |
+
token_type_ids=token_type_ids,
|
674 |
+
position_ids=position_ids,
|
675 |
+
head_mask=head_mask,
|
676 |
+
inputs_embeds=inputs_embeds,
|
677 |
+
output_attentions=output_attentions,
|
678 |
+
output_hidden_states=output_hidden_states,
|
679 |
+
return_dict=return_dict,
|
680 |
+
)
|
681 |
+
|
682 |
+
pooled_output = outputs[1]
|
683 |
+
|
684 |
+
pooled_output = self.dropout(pooled_output)
|
685 |
+
logits = self.classifier(pooled_output)
|
686 |
+
reshaped_logits = logits.view(-1, num_choices)
|
687 |
+
|
688 |
+
loss = None
|
689 |
+
if labels is not None:
|
690 |
+
loss_fct = nn.CrossEntropyLoss()
|
691 |
+
loss = loss_fct(reshaped_logits, labels)
|
692 |
+
|
693 |
+
if not return_dict:
|
694 |
+
output = (reshaped_logits,) + outputs[2:]
|
695 |
+
return ((loss,) + output) if loss is not None else output
|
696 |
+
|
697 |
+
return MultipleChoiceModelOutput(
|
698 |
+
loss=loss,
|
699 |
+
logits=reshaped_logits,
|
700 |
+
hidden_states=None,
|
701 |
+
attentions=None,
|
702 |
+
)
|
703 |
+
|
704 |
+
|
705 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
706 |
+
# TBD: Push in future commit
|
707 |
+
pass
|
708 |
+
|
709 |
+
|
710 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
711 |
+
"""Bert Model with a span classification head.
|
712 |
+
|
713 |
+
This is used for extractive question-answering tasks like SQuAD (a linear
|
714 |
+
layers on top of the hidden states' output to compute `span start logits`
|
715 |
+
and `span end logits`).
|
716 |
+
"""
|
717 |
+
|
718 |
+
# TBD: Push in future commit
|
719 |
+
|
720 |
+
|
721 |
+
###################
|
722 |
+
# FlexBert Heads
|
723 |
+
###################
|
724 |
+
|
725 |
+
|
726 |
+
class FlexBertPredictionHead(nn.Module):
|
727 |
+
def __init__(self, config: FlexBertConfig):
|
728 |
+
super().__init__()
|
729 |
+
self.config = config
|
730 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_pred_bias)
|
731 |
+
self.act = get_act_fn(config.head_pred_act) if config.head_pred_act else nn.Identity()
|
732 |
+
self.norm = (
|
733 |
+
get_norm_layer(config, compiled_norm=config.compile_model) if config.head_pred_norm else nn.Identity()
|
734 |
+
)
|
735 |
+
|
736 |
+
def _init_weights(self, reset_params: bool = False):
|
737 |
+
if reset_params:
|
738 |
+
self.norm.reset_parameters()
|
739 |
+
init_weights(self.config, self.dense, layer_dim=self.config.hidden_size, type_of_module=ModuleType.in_module)
|
740 |
+
|
741 |
+
def reset_parameters(self):
|
742 |
+
self._init_weights(reset_params=True)
|
743 |
+
|
744 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
745 |
+
return self.norm(self.act(self.dense(hidden_states)))
|
746 |
+
|
747 |
+
|
748 |
+
class FlexBertPoolingHead(nn.Module):
|
749 |
+
def __init__(self, config: FlexBertConfig):
|
750 |
+
super().__init__()
|
751 |
+
self.config = config
|
752 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_class_bias)
|
753 |
+
self.act = get_act_fn(config.head_class_act) if config.head_class_act else nn.Identity()
|
754 |
+
self.norm = get_norm_layer(config) if config.head_class_norm else nn.Identity()
|
755 |
+
self.drop = torch.nn.Dropout(config.head_class_dropout) if config.head_class_dropout > 0 else nn.Identity()
|
756 |
+
self.pooling_type = config.pooling_type
|
757 |
+
|
758 |
+
def forward(self, hidden_states: torch.Tensor, pool: Optional[bool] = True) -> torch.Tensor:
|
759 |
+
if pool:
|
760 |
+
if self.pooling_type == "cls":
|
761 |
+
output = hidden_states[:, 0]
|
762 |
+
elif self.pooling_type == "mean":
|
763 |
+
output = hidden_states.mean(dim=1)
|
764 |
+
elif self.pooling_type == "max":
|
765 |
+
output = hidden_states.max(dim=1)[0]
|
766 |
+
else:
|
767 |
+
output = hidden_states
|
768 |
+
|
769 |
+
return self.drop(self.norm(self.act(self.dense(output))))
|
770 |
+
|
771 |
+
def _init_weights(self, reset_params: bool = False):
|
772 |
+
init_weights(self.config, self.dense, self.config.hidden_size, type_of_module=ModuleType.out_module)
|
773 |
+
if reset_params and hasattr(self.norm, "reset_parameters"):
|
774 |
+
self.norm.reset_parameters()
|
775 |
+
|
776 |
+
def reset_parameters(self):
|
777 |
+
self._init_weights(reset_params=True)
|
778 |
+
|
779 |
+
|
780 |
+
###################
|
781 |
+
# FlexBert Models
|
782 |
+
###################
|
783 |
+
|
784 |
+
|
785 |
+
@dataclass
|
786 |
+
class MaskedLMOutput(ModelOutput):
|
787 |
+
"""
|
788 |
+
Base class for masked language models outputs.
|
789 |
+
|
790 |
+
Args:
|
791 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
792 |
+
Masked language modeling (MLM) loss.
|
793 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
794 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
795 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
796 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
797 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
798 |
+
|
799 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
800 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
801 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
802 |
+
sequence_length)`.
|
803 |
+
|
804 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
805 |
+
heads.
|
806 |
+
"""
|
807 |
+
|
808 |
+
loss: Optional[torch.FloatTensor] = None
|
809 |
+
logits: torch.FloatTensor = None
|
810 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
811 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
812 |
+
indices: Optional[torch.LongTensor] = None
|
813 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
814 |
+
max_seqlen: Optional[int] = None
|
815 |
+
batch_size: Optional[int] = None
|
816 |
+
seq_len: Optional[int] = None
|
817 |
+
labels: Optional[torch.LongTensor] = None
|
818 |
+
|
819 |
+
|
820 |
+
@dataclass
|
821 |
+
class MaskedLMOutputZLoss(ModelOutput):
|
822 |
+
"""
|
823 |
+
Base class for masked language models outputs.
|
824 |
+
|
825 |
+
Args:
|
826 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
827 |
+
Masked language modeling (MLM) loss.
|
828 |
+
ce_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
829 |
+
Cross entropy loss.
|
830 |
+
z_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
831 |
+
Z loss.
|
832 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
833 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
834 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
835 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
836 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
837 |
+
|
838 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
839 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
840 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
841 |
+
sequence_length)`.
|
842 |
+
|
843 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
844 |
+
heads.
|
845 |
+
indices (`torch.LongTensor` of shape `(batch_size,)`):
|
846 |
+
Indices of the tokens to be masked.
|
847 |
+
"""
|
848 |
+
|
849 |
+
loss: Optional[torch.FloatTensor] = None
|
850 |
+
ce_loss: Optional[torch.FloatTensor] = None
|
851 |
+
z_loss: Optional[torch.FloatTensor] = None
|
852 |
+
logits: torch.FloatTensor = None
|
853 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
854 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
855 |
+
indices: Optional[torch.LongTensor] = None
|
856 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
857 |
+
max_seqlen: Optional[int] = None
|
858 |
+
batch_size: Optional[int] = None
|
859 |
+
seq_len: Optional[int] = None
|
860 |
+
labels: Optional[torch.LongTensor] = None
|
861 |
+
|
862 |
+
|
863 |
+
class FlexBertPreTrainedModel(BertPreTrainedModel):
|
864 |
+
"""
|
865 |
+
An abstract class to handle custom weights initialization of modules
|
866 |
+
"""
|
867 |
+
|
868 |
+
def _init_module_weights(self, module: nn.Module):
|
869 |
+
"""
|
870 |
+
Custom weight init of modules using src.bert_layers.initialization.init_weights
|
871 |
+
Currently only supports init of embedding modules
|
872 |
+
"""
|
873 |
+
assert isinstance(module, nn.Module)
|
874 |
+
if isinstance(module, nn.Embedding):
|
875 |
+
init_weights(self.config, module, type_of_module=ModuleType.emb)
|
876 |
+
else:
|
877 |
+
raise NotImplementedError("Custom weight init for the given module is not supported")
|
878 |
+
|
879 |
+
|
880 |
+
class FlexBertModel(FlexBertPreTrainedModel):
|
881 |
+
"""Overall BERT model.
|
882 |
+
|
883 |
+
Args:
|
884 |
+
config: a BertConfig class instance with the configuration to build a new model
|
885 |
+
|
886 |
+
Inputs:
|
887 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
888 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
889 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
890 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
891 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
892 |
+
a `sentence B` token (see BERT paper for more details).
|
893 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
894 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
895 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
896 |
+
a batch has varying length sentences.
|
897 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
898 |
+
|
899 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
900 |
+
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
901 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
902 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
903 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
904 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
905 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
906 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
907 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
908 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
909 |
+
|
910 |
+
Example usage:
|
911 |
+
```python
|
912 |
+
# Already been converted into WordPiece token ids
|
913 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
914 |
+
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
915 |
+
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
916 |
+
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
917 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
918 |
+
model = BertModel(config=config)
|
919 |
+
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
920 |
+
```
|
921 |
+
"""
|
922 |
+
|
923 |
+
def __init__(self, config: FlexBertConfig):
|
924 |
+
super().__init__(config)
|
925 |
+
self.embeddings = get_embedding_layer(config)
|
926 |
+
self.encoder = get_encoder_layer(config)
|
927 |
+
if config.final_norm:
|
928 |
+
# if we use prenorm attention we need to add a final norm
|
929 |
+
self.final_norm = get_norm_layer(config)
|
930 |
+
else:
|
931 |
+
self.final_norm = None
|
932 |
+
self.unpad_embeddings = config.unpad_embeddings
|
933 |
+
|
934 |
+
def post_init(self):
|
935 |
+
self._init_weights(reset_params=False)
|
936 |
+
self._backward_compatibility_gradient_checkpointing()
|
937 |
+
|
938 |
+
def get_input_embeddings(self):
|
939 |
+
return self.embeddings.tok_embeddings
|
940 |
+
|
941 |
+
def set_input_embeddings(self, value):
|
942 |
+
self.embeddings.tok_embeddings = value
|
943 |
+
|
944 |
+
def forward(
|
945 |
+
self,
|
946 |
+
input_ids: torch.Tensor,
|
947 |
+
attention_mask: Optional[torch.Tensor] = None,
|
948 |
+
position_ids: Optional[torch.Tensor] = None,
|
949 |
+
indices: Optional[torch.Tensor] = None,
|
950 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
951 |
+
max_seqlen: Optional[int] = None,
|
952 |
+
**kwargs,
|
953 |
+
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
|
954 |
+
if attention_mask is None:
|
955 |
+
attention_mask = torch.ones_like(input_ids)
|
956 |
+
|
957 |
+
embedding_output = self.embeddings(input_ids, position_ids)
|
958 |
+
|
959 |
+
encoder_outputs = self.encoder(
|
960 |
+
hidden_states=embedding_output,
|
961 |
+
attention_mask=attention_mask,
|
962 |
+
indices=indices,
|
963 |
+
cu_seqlens=cu_seqlens,
|
964 |
+
max_seqlen=max_seqlen,
|
965 |
+
)
|
966 |
+
|
967 |
+
if self.final_norm is not None:
|
968 |
+
encoder_outputs = self.final_norm(encoder_outputs)
|
969 |
+
return encoder_outputs
|
970 |
+
|
971 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
972 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
973 |
+
if module:
|
974 |
+
self._init_module_weights(module)
|
975 |
+
else:
|
976 |
+
assert isinstance(reset_params, bool)
|
977 |
+
self.embeddings._init_weights(reset_params=reset_params)
|
978 |
+
self.encoder._init_weights(reset_params=reset_params)
|
979 |
+
|
980 |
+
if reset_params and self.config.final_norm:
|
981 |
+
self.final_norm.reset_parameters()
|
982 |
+
|
983 |
+
def reset_parameters(self):
|
984 |
+
self._init_weights(reset_params=True)
|
985 |
+
|
986 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
987 |
+
"""Returns the number of parameters in the model.
|
988 |
+
|
989 |
+
Args:
|
990 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
991 |
+
trainable: only count trainable parameters.
|
992 |
+
"""
|
993 |
+
params = sum([_count_parameters(layer, trainable) for layer in self.encoder.layers])
|
994 |
+
if count_embeddings:
|
995 |
+
params += _count_parameters(self.embeddings, trainable)
|
996 |
+
if hasattr(self.embeddings, "position_embeddings"):
|
997 |
+
params -= _count_parameters(self.embeddings.position_embeddings, trainable)
|
998 |
+
return params
|
999 |
+
|
1000 |
+
|
1001 |
+
class FlexBertForMaskedLM(FlexBertPreTrainedModel):
|
1002 |
+
def __init__(self, config: FlexBertConfig):
|
1003 |
+
super().__init__(config)
|
1004 |
+
self.bert = FlexBertModel(config)
|
1005 |
+
self.head = FlexBertPredictionHead(config)
|
1006 |
+
|
1007 |
+
if config.tie_word_embeddings:
|
1008 |
+
decoder_weights = self.bert.embeddings.tok_embeddings.weight
|
1009 |
+
else:
|
1010 |
+
decoder_weights = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight
|
1011 |
+
self.decoder = nn.Linear(decoder_weights.size(1), decoder_weights.size(0), bias=config.decoder_bias)
|
1012 |
+
self.decoder.weight = decoder_weights
|
1013 |
+
|
1014 |
+
self.loss_fn = nn.CrossEntropyLoss() if not hasattr(config, "loss_function") else get_loss_fn(config)
|
1015 |
+
self.fa_ce = getattr(config, "loss_function", "cross_entropy") == "fa_cross_entropy"
|
1016 |
+
self.return_z_loss = config.loss_kwargs.get("return_z_loss", False)
|
1017 |
+
self.unpad_embeddings = config.unpad_embeddings
|
1018 |
+
self.pad_logits = config.pad_logits
|
1019 |
+
self.compile_model = config.compile_model
|
1020 |
+
self.masked_prediction = config.masked_prediction
|
1021 |
+
|
1022 |
+
# Initialize weights and apply final processing
|
1023 |
+
self._init_weights(reset_params=False)
|
1024 |
+
|
1025 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
1026 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
1027 |
+
if module:
|
1028 |
+
self._init_module_weights(module)
|
1029 |
+
else:
|
1030 |
+
assert isinstance(reset_params, bool)
|
1031 |
+
self.bert._init_weights(reset_params=reset_params)
|
1032 |
+
self.head._init_weights(reset_params=reset_params)
|
1033 |
+
|
1034 |
+
# Output weights.
|
1035 |
+
if not self.config.tie_word_embeddings:
|
1036 |
+
init_weights(self.config, self.decoder, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
1037 |
+
|
1038 |
+
@classmethod
|
1039 |
+
def from_composer(
|
1040 |
+
cls,
|
1041 |
+
pretrained_checkpoint,
|
1042 |
+
state_dict=None,
|
1043 |
+
cache_dir=None,
|
1044 |
+
from_tf=False,
|
1045 |
+
config=None,
|
1046 |
+
*inputs,
|
1047 |
+
**kwargs,
|
1048 |
+
):
|
1049 |
+
"""Load from pre-trained."""
|
1050 |
+
model = cls(config, *inputs, **kwargs)
|
1051 |
+
if from_tf:
|
1052 |
+
raise ValueError("FlexBERT does not support loading TensorFlow weights.")
|
1053 |
+
|
1054 |
+
state_dict = torch.load(pretrained_checkpoint)
|
1055 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
1056 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
1057 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
1058 |
+
|
1059 |
+
if len(missing_keys) > 0:
|
1060 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
1061 |
+
if len(unexpected_keys) > 0:
|
1062 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
1063 |
+
|
1064 |
+
return model
|
1065 |
+
|
1066 |
+
def get_output_embeddings(self):
|
1067 |
+
return self.decoder
|
1068 |
+
|
1069 |
+
def set_output_embeddings(self, new_embeddings):
|
1070 |
+
self.decoder = new_embeddings
|
1071 |
+
|
1072 |
+
@torch.no_grad()
|
1073 |
+
def unpad_inputs(
|
1074 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor, labels: torch.Tensor
|
1075 |
+
):
|
1076 |
+
return unpad_input(input_ids, attention_mask, position_ids, labels)
|
1077 |
+
|
1078 |
+
@torch.no_grad()
|
1079 |
+
def pad_inputs(
|
1080 |
+
self,
|
1081 |
+
inputs: torch.Tensor,
|
1082 |
+
indices: torch.Tensor,
|
1083 |
+
batch_size: int,
|
1084 |
+
seqlen: int,
|
1085 |
+
labels: Optional[torch.Tensor] = None,
|
1086 |
+
ignore_index: int = -100,
|
1087 |
+
):
|
1088 |
+
return pad_input(
|
1089 |
+
inputs=inputs, indices=indices, batch=batch_size, seqlen=seqlen, labels=labels, ignore_index=ignore_index
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
@torch.compile(dynamic=True)
|
1093 |
+
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
|
1094 |
+
return self.decoder(self.head(output))
|
1095 |
+
|
1096 |
+
def forward(
|
1097 |
+
self,
|
1098 |
+
input_ids: Optional[torch.Tensor],
|
1099 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1100 |
+
position_ids: Optional[torch.Tensor] = None,
|
1101 |
+
labels: Optional[torch.Tensor] = None,
|
1102 |
+
return_dict: Optional[bool] = None,
|
1103 |
+
indices: Optional[torch.Tensor] = None,
|
1104 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1105 |
+
max_seqlen: Optional[int] = None,
|
1106 |
+
batch_size: Optional[int] = None,
|
1107 |
+
seq_len: Optional[int] = None,
|
1108 |
+
**kwargs,
|
1109 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1110 |
+
# labels should be a `torch.LongTensor` of shape
|
1111 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
1112 |
+
# masked language modeling loss.
|
1113 |
+
#
|
1114 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
1115 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
1116 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
1117 |
+
# ..., config.vocab_size]`
|
1118 |
+
#
|
1119 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
1120 |
+
# seqlen) dimensions are flattened
|
1121 |
+
|
1122 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1123 |
+
|
1124 |
+
if self.unpad_embeddings and (indices is None and cu_seqlens is None and max_seqlen is None):
|
1125 |
+
batch_size, seq_len = input_ids.shape[:2]
|
1126 |
+
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = self.unpad_inputs(
|
1127 |
+
input_ids, attention_mask, position_ids, labels
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
output = self.bert(
|
1131 |
+
input_ids,
|
1132 |
+
attention_mask=attention_mask,
|
1133 |
+
position_ids=position_ids,
|
1134 |
+
indices=indices,
|
1135 |
+
cu_seqlens=cu_seqlens,
|
1136 |
+
max_seqlen=max_seqlen,
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
if self.masked_prediction and labels is not None:
|
1140 |
+
# flatten labels and output first
|
1141 |
+
labels = labels.view(-1)
|
1142 |
+
output = output.view(labels.shape[0], -1)
|
1143 |
+
|
1144 |
+
# then filter out the non-masked tokens
|
1145 |
+
mask_tokens = labels != self.loss_fn.ignore_index
|
1146 |
+
output = output[mask_tokens]
|
1147 |
+
labels = labels[mask_tokens]
|
1148 |
+
|
1149 |
+
if self.compile_model:
|
1150 |
+
logits = self.compiled_head(output)
|
1151 |
+
else:
|
1152 |
+
logits = self.decoder(self.head(output))
|
1153 |
+
|
1154 |
+
loss = None
|
1155 |
+
if labels is not None:
|
1156 |
+
if not self.masked_prediction:
|
1157 |
+
labels = labels.view(-1)
|
1158 |
+
logits = logits.view(labels.shape[0], -1)
|
1159 |
+
|
1160 |
+
if self.return_z_loss:
|
1161 |
+
loss, z_loss = self.loss_fn(logits, labels)
|
1162 |
+
if self.pad_logits:
|
1163 |
+
return MaskedLMOutputZLoss(
|
1164 |
+
loss=loss,
|
1165 |
+
ce_loss=loss.detach().clone() - z_loss,
|
1166 |
+
z_loss=z_loss,
|
1167 |
+
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
|
1168 |
+
hidden_states=None,
|
1169 |
+
attentions=None,
|
1170 |
+
)
|
1171 |
+
else:
|
1172 |
+
return MaskedLMOutputZLoss(
|
1173 |
+
loss=loss,
|
1174 |
+
ce_loss=loss.detach().clone() - z_loss,
|
1175 |
+
z_loss=z_loss,
|
1176 |
+
logits=logits,
|
1177 |
+
hidden_states=None,
|
1178 |
+
attentions=None,
|
1179 |
+
indices=indices,
|
1180 |
+
cu_seqlens=cu_seqlens,
|
1181 |
+
max_seqlen=max_seqlen,
|
1182 |
+
batch_size=batch_size,
|
1183 |
+
seq_len=seq_len,
|
1184 |
+
labels=labels,
|
1185 |
+
)
|
1186 |
+
else:
|
1187 |
+
loss = self.loss_fn(logits, labels)
|
1188 |
+
|
1189 |
+
if self.pad_logits:
|
1190 |
+
return MaskedLMOutput(
|
1191 |
+
loss=loss,
|
1192 |
+
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
|
1193 |
+
hidden_states=None,
|
1194 |
+
attentions=None,
|
1195 |
+
)
|
1196 |
+
else:
|
1197 |
+
return MaskedLMOutput(
|
1198 |
+
loss=loss,
|
1199 |
+
logits=logits,
|
1200 |
+
hidden_states=None,
|
1201 |
+
attentions=None,
|
1202 |
+
indices=indices,
|
1203 |
+
cu_seqlens=cu_seqlens,
|
1204 |
+
max_seqlen=max_seqlen,
|
1205 |
+
batch_size=batch_size,
|
1206 |
+
seq_len=seq_len,
|
1207 |
+
labels=labels,
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
|
1211 |
+
input_shape = input_ids.shape
|
1212 |
+
effective_batch_size = input_shape[0]
|
1213 |
+
|
1214 |
+
# add a dummy token
|
1215 |
+
if self.config.pad_token_id is None:
|
1216 |
+
raise ValueError("The PAD token should be defined for generation")
|
1217 |
+
|
1218 |
+
attention_mask = torch.cat(
|
1219 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
|
1220 |
+
dim=-1,
|
1221 |
+
)
|
1222 |
+
dummy_token = torch.full(
|
1223 |
+
(effective_batch_size, 1),
|
1224 |
+
self.config.pad_token_id,
|
1225 |
+
dtype=torch.long,
|
1226 |
+
device=input_ids.device,
|
1227 |
+
)
|
1228 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1229 |
+
|
1230 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1231 |
+
|
1232 |
+
def get_number_parameters(
|
1233 |
+
self, count_embeddings: bool = True, count_decoder: bool = False, trainable: bool = True
|
1234 |
+
) -> int:
|
1235 |
+
"""Returns the number of parameters in the model.
|
1236 |
+
|
1237 |
+
Args:
|
1238 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
1239 |
+
count_decoder: count the parameters in the decoder layer if weights are not tied.
|
1240 |
+
trainable: only count trainable parameters.
|
1241 |
+
"""
|
1242 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
1243 |
+
params += _count_parameters(self.head, trainable)
|
1244 |
+
if count_decoder and not self.config.tie_word_embeddings:
|
1245 |
+
params += _count_parameters(self.decoder, trainable)
|
1246 |
+
return params
|
1247 |
+
|
1248 |
+
|
1249 |
+
class FlexBertForSequenceClassification(FlexBertPreTrainedModel):
|
1250 |
+
"""Bert Model transformer with a sequence classification/regression head.
|
1251 |
+
|
1252 |
+
This head is just a linear layer on top of the pooled output. Used for,
|
1253 |
+
e.g., GLUE tasks.
|
1254 |
+
"""
|
1255 |
+
|
1256 |
+
def __init__(self, config: FlexBertConfig):
|
1257 |
+
super().__init__(config)
|
1258 |
+
self.num_labels = config.num_labels
|
1259 |
+
self.config = config
|
1260 |
+
|
1261 |
+
self.bert = FlexBertModel(config)
|
1262 |
+
self.head = FlexBertPoolingHead(config)
|
1263 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1264 |
+
|
1265 |
+
# Initialize weights and apply final processing
|
1266 |
+
self._init_weights(reset_params=False)
|
1267 |
+
|
1268 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
1269 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
1270 |
+
if module:
|
1271 |
+
self._init_module_weights(module)
|
1272 |
+
else:
|
1273 |
+
assert isinstance(reset_params, bool)
|
1274 |
+
self.bert._init_weights(reset_params=reset_params)
|
1275 |
+
self.head._init_weights(reset_params=reset_params)
|
1276 |
+
init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
1277 |
+
|
1278 |
+
@classmethod
|
1279 |
+
def from_composer(
|
1280 |
+
cls,
|
1281 |
+
pretrained_checkpoint,
|
1282 |
+
state_dict=None,
|
1283 |
+
cache_dir=None,
|
1284 |
+
from_tf=False,
|
1285 |
+
config=None,
|
1286 |
+
*inputs,
|
1287 |
+
**kwargs,
|
1288 |
+
):
|
1289 |
+
"""Load from pre-trained."""
|
1290 |
+
model = cls(config, *inputs, **kwargs)
|
1291 |
+
if from_tf:
|
1292 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
1293 |
+
|
1294 |
+
state_dict = torch.load(pretrained_checkpoint)
|
1295 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
1296 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
1297 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
1298 |
+
|
1299 |
+
if len(missing_keys) > 0:
|
1300 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
1301 |
+
if len(unexpected_keys) > 0:
|
1302 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
1303 |
+
|
1304 |
+
return model
|
1305 |
+
|
1306 |
+
def forward(
|
1307 |
+
self,
|
1308 |
+
input_ids: Optional[torch.Tensor] = None,
|
1309 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1310 |
+
position_ids: Optional[torch.Tensor] = None,
|
1311 |
+
labels: Optional[torch.Tensor] = None,
|
1312 |
+
return_dict: Optional[bool] = None,
|
1313 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1314 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1315 |
+
# Labels for computing the sequence classification/regression loss.
|
1316 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
1317 |
+
# If `config.num_labels == 1` a regression loss is computed
|
1318 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
1319 |
+
# is computed (cross-entropy).
|
1320 |
+
|
1321 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1322 |
+
|
1323 |
+
output = self.bert(
|
1324 |
+
input_ids,
|
1325 |
+
attention_mask=attention_mask,
|
1326 |
+
position_ids=position_ids,
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
pooled_output = self.head(output)
|
1330 |
+
logits = self.classifier(pooled_output)
|
1331 |
+
|
1332 |
+
loss = None
|
1333 |
+
if labels is not None:
|
1334 |
+
# Compute loss
|
1335 |
+
if self.config.problem_type is None:
|
1336 |
+
if self.num_labels == 1:
|
1337 |
+
self.config.problem_type = "regression"
|
1338 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1339 |
+
self.config.problem_type = "single_label_classification"
|
1340 |
+
else:
|
1341 |
+
self.config.problem_type = "multi_label_classification"
|
1342 |
+
|
1343 |
+
if self.config.problem_type == "regression":
|
1344 |
+
loss_fct = nn.MSELoss()
|
1345 |
+
if self.num_labels == 1:
|
1346 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1347 |
+
else:
|
1348 |
+
loss = loss_fct(logits, labels)
|
1349 |
+
elif self.config.problem_type == "single_label_classification":
|
1350 |
+
loss_fct = nn.CrossEntropyLoss()
|
1351 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1352 |
+
elif self.config.problem_type == "multi_label_classification":
|
1353 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1354 |
+
loss = loss_fct(logits, labels)
|
1355 |
+
|
1356 |
+
if not return_dict:
|
1357 |
+
output = (logits,) + output
|
1358 |
+
return ((loss,) + output) if loss is not None else output
|
1359 |
+
|
1360 |
+
return SequenceClassifierOutput(
|
1361 |
+
loss=loss,
|
1362 |
+
logits=logits,
|
1363 |
+
hidden_states=None,
|
1364 |
+
attentions=None,
|
1365 |
+
)
|
1366 |
+
|
1367 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
1368 |
+
"""Returns the number of parameters in the model.
|
1369 |
+
|
1370 |
+
Args:
|
1371 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
1372 |
+
trainable: only count trainable parameters.
|
1373 |
+
"""
|
1374 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
1375 |
+
params += _count_parameters(self.head, trainable)
|
1376 |
+
params += _count_parameters(self.classifier, trainable)
|
1377 |
+
return params
|
1378 |
+
|
1379 |
+
|
1380 |
+
class FlexBertForMultipleChoice(FlexBertPreTrainedModel):
|
1381 |
+
"""
|
1382 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1383 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1384 |
+
"""
|
1385 |
+
|
1386 |
+
def __init__(self, config: FlexBertConfig):
|
1387 |
+
super().__init__(config)
|
1388 |
+
self.num_labels = config.num_labels
|
1389 |
+
self.config = config
|
1390 |
+
|
1391 |
+
self.bert = FlexBertModel(config)
|
1392 |
+
self.head = FlexBertPoolingHead(config)
|
1393 |
+
|
1394 |
+
# In multiple choice tasks, all choices are submitted in a batch, and
|
1395 |
+
# we compute a logit for each option independently. The logits are then
|
1396 |
+
# normalized in the forward pass to get a probability distribution over
|
1397 |
+
# the choices.
|
1398 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1399 |
+
|
1400 |
+
# Initialize weights and apply final processing
|
1401 |
+
self._init_weights(reset_params=False)
|
1402 |
+
|
1403 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
1404 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
1405 |
+
if module:
|
1406 |
+
self._init_module_weights(module)
|
1407 |
+
else:
|
1408 |
+
assert isinstance(reset_params, bool)
|
1409 |
+
self.bert._init_weights(reset_params=reset_params)
|
1410 |
+
self.head._init_weights(reset_params=reset_params)
|
1411 |
+
init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
1412 |
+
|
1413 |
+
@classmethod
|
1414 |
+
def from_composer(
|
1415 |
+
cls,
|
1416 |
+
pretrained_checkpoint,
|
1417 |
+
state_dict=None,
|
1418 |
+
cache_dir=None,
|
1419 |
+
from_tf=False,
|
1420 |
+
config=None,
|
1421 |
+
*inputs,
|
1422 |
+
**kwargs,
|
1423 |
+
):
|
1424 |
+
"""Load from pre-trained."""
|
1425 |
+
model = cls(config, *inputs, **kwargs)
|
1426 |
+
if from_tf:
|
1427 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
1428 |
+
|
1429 |
+
state_dict = torch.load(pretrained_checkpoint)
|
1430 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
1431 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
1432 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
1433 |
+
|
1434 |
+
if len(missing_keys) > 0:
|
1435 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
1436 |
+
if len(unexpected_keys) > 0:
|
1437 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
1438 |
+
|
1439 |
+
return model
|
1440 |
+
|
1441 |
+
def forward(
|
1442 |
+
self,
|
1443 |
+
input_ids: Optional[torch.Tensor] = None,
|
1444 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1445 |
+
position_ids: Optional[torch.Tensor] = None,
|
1446 |
+
labels: Optional[torch.Tensor] = None,
|
1447 |
+
return_dict: Optional[bool] = None,
|
1448 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1449 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1450 |
+
# Labels for computing the sequence classification/regression loss.
|
1451 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
1452 |
+
# If `config.num_labels == 1` a regression loss is computed
|
1453 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
1454 |
+
# is computed (cross-entropy).
|
1455 |
+
|
1456 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1457 |
+
num_choices = input_ids.shape[1]
|
1458 |
+
|
1459 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1460 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1461 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1462 |
+
|
1463 |
+
output = self.bert(
|
1464 |
+
input_ids,
|
1465 |
+
attention_mask=attention_mask,
|
1466 |
+
position_ids=position_ids,
|
1467 |
+
)
|
1468 |
+
|
1469 |
+
pooled_output = self.head(output)
|
1470 |
+
logits = self.classifier(pooled_output)
|
1471 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1472 |
+
|
1473 |
+
loss = None
|
1474 |
+
if labels is not None:
|
1475 |
+
loss_fct = nn.CrossEntropyLoss()
|
1476 |
+
loss = loss_fct(reshaped_logits, labels)
|
1477 |
+
|
1478 |
+
if not return_dict:
|
1479 |
+
output = (reshaped_logits,) + output
|
1480 |
+
return ((loss,) + output) if loss is not None else output
|
1481 |
+
|
1482 |
+
return MultipleChoiceModelOutput(
|
1483 |
+
loss=loss,
|
1484 |
+
logits=reshaped_logits,
|
1485 |
+
hidden_states=None,
|
1486 |
+
attentions=None,
|
1487 |
+
)
|
1488 |
+
|
1489 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
1490 |
+
"""Returns the number of parameters in the model.
|
1491 |
+
|
1492 |
+
Args:
|
1493 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
1494 |
+
trainable: only count trainable parameters.
|
1495 |
+
"""
|
1496 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
1497 |
+
params += _count_parameters(self.head, trainable)
|
1498 |
+
params += _count_parameters(self.classifier, trainable)
|
1499 |
+
return params
|
1500 |
+
|
1501 |
+
|
1502 |
+
def init_model_from_pretrained(
|
1503 |
+
pretrained_model: FlexBertModel,
|
1504 |
+
new_model: FlexBertModel,
|
1505 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
1506 |
+
):
|
1507 |
+
"""
|
1508 |
+
Initialize the new model from the pretrained model.
|
1509 |
+
|
1510 |
+
This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
|
1511 |
+
The new model must have the same or more layers and the same or larger dimensions than the pretrained model.
|
1512 |
+
|
1513 |
+
Args:
|
1514 |
+
pretrained_model (FlexBertModel): The smaller, pre-trained model
|
1515 |
+
new_model (FlexBertModel): The larger model to be initialized
|
1516 |
+
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
|
1517 |
+
|
1518 |
+
This function assumes that the new_model has more layers and a larger hidden size
|
1519 |
+
than the pretrained_model, but the same vocabulary size.
|
1520 |
+
"""
|
1521 |
+
|
1522 |
+
# Tile embeddings
|
1523 |
+
assert isinstance(
|
1524 |
+
new_model.embeddings, type(pretrained_model.embeddings)
|
1525 |
+
), f"Pretrained and new_model layers must be the same type, got {type(new_model.embeddings)} and {type(pretrained_model.embeddings)}"
|
1526 |
+
assert isinstance(
|
1527 |
+
new_model.embeddings,
|
1528 |
+
(FlexBertAbsoluteEmbeddings, FlexBertSansPositionEmbeddings, FlexBertCompiledSansPositionEmbeddings),
|
1529 |
+
), f"Unsupported embedding layer type: {type(new_model.embeddings)}"
|
1530 |
+
|
1531 |
+
tile_embedding(pretrained_model.embeddings.tok_embeddings, new_model.embeddings.tok_embeddings, mode=mode)
|
1532 |
+
if isinstance(pretrained_model.embeddings, FlexBertAbsoluteEmbeddings):
|
1533 |
+
tile_embedding(pretrained_model.embeddings.pos_embeddings, new_model.embeddings.pos_embeddings, mode=mode)
|
1534 |
+
|
1535 |
+
if hasattr(pretrained_model.embeddings, "norm"):
|
1536 |
+
tile_norm(pretrained_model.embeddings.norm, new_model.embeddings.norm, mode=mode)
|
1537 |
+
|
1538 |
+
# Tile encoder layers
|
1539 |
+
assert isinstance(
|
1540 |
+
pretrained_model.encoder, (FlexBertUnpadEncoder, FlexBertPaddedEncoder)
|
1541 |
+
), f"Unsupported encoder layer type: {type(pretrained_model.encoder)}"
|
1542 |
+
assert isinstance(
|
1543 |
+
new_model.encoder, type(pretrained_model.encoder)
|
1544 |
+
), f"Pretrained and new_model encoder layers must be the same type, got {type(new_model.encoder)} and {type(pretrained_model.encoder)}"
|
1545 |
+
|
1546 |
+
# Calculate the layer mapping
|
1547 |
+
pretrained_layers = len(pretrained_model.encoder.layers)
|
1548 |
+
new_layers = len(new_model.encoder.layers)
|
1549 |
+
layer_mapping = [round(i * pretrained_layers / new_layers) for i in range(new_layers)]
|
1550 |
+
|
1551 |
+
# Initialize layers
|
1552 |
+
for new_model_idx, pretrained_idx in enumerate(layer_mapping):
|
1553 |
+
new_model_layer = new_model.encoder.layers[new_model_idx]
|
1554 |
+
pretrained_layer = pretrained_model.encoder.layers[pretrained_idx]
|
1555 |
+
|
1556 |
+
# first tile the PreNorm/PostNorm layers
|
1557 |
+
assert isinstance(
|
1558 |
+
new_model_layer, type(pretrained_layer)
|
1559 |
+
), f"Pretrained and new_model prenorm/postnorm layers must be the same type, got {type(new_model_layer)} and {type(pretrained_layer)}"
|
1560 |
+
assert isinstance(
|
1561 |
+
new_model_layer,
|
1562 |
+
(
|
1563 |
+
FlexBertUnpadPreNormLayer,
|
1564 |
+
FlexBertCompileUnpadPreNormLayer,
|
1565 |
+
FlexBertUnpadParallelPreNormLayer,
|
1566 |
+
FlexBertUnpadPostNormLayer,
|
1567 |
+
FlexBertPaddedPreNormLayer,
|
1568 |
+
FlexBertPaddedParallelPreNormLayer,
|
1569 |
+
FlexBertPaddedPostNormLayer,
|
1570 |
+
),
|
1571 |
+
), f"Unsupported prenorm/postnorm layer type: {type(new_model_layer)}"
|
1572 |
+
|
1573 |
+
# First tile the normalization layers
|
1574 |
+
if hasattr(pretrained_layer, "attn_norm"):
|
1575 |
+
tile_norm(pretrained_layer.attn_norm, new_model_layer.attn_norm, mode=mode)
|
1576 |
+
if hasattr(pretrained_layer, "norm"):
|
1577 |
+
tile_norm(pretrained_layer.norm, new_model_layer.norm, mode=mode)
|
1578 |
+
if hasattr(pretrained_layer, "mlp_norm"):
|
1579 |
+
tile_norm(pretrained_layer.mlp_norm, new_model_layer.mlp_norm, mode=mode)
|
1580 |
+
|
1581 |
+
# Then tile the attention & mlp layers
|
1582 |
+
assert isinstance(
|
1583 |
+
new_model_layer.attn, type(pretrained_layer.attn)
|
1584 |
+
), f"Pretrained and new_model attention layers must be the same type, got {type(new_model_layer.attn)} and {type(pretrained_layer.attn)}"
|
1585 |
+
|
1586 |
+
# first try the parallel attention layers
|
1587 |
+
if isinstance(pretrained_layer, (FlexBertUnpadParallelPreNormLayer, FlexBertPaddedParallelPreNormLayer)):
|
1588 |
+
assert isinstance(
|
1589 |
+
pretrained_layer.attn,
|
1590 |
+
(
|
1591 |
+
FlexBertUnpadParallelAttention,
|
1592 |
+
FlexBertPaddedParallelAttention,
|
1593 |
+
FlexBertUnpadRopeParallelAttention,
|
1594 |
+
FlexBertPaddedRopeParallelAttention,
|
1595 |
+
),
|
1596 |
+
), f"Parallel prenorm layer must have parallel attention layer: {type(pretrained_layer.attn)}"
|
1597 |
+
if not isinstance(pretrained_layer.mlp, (FlexBertParallelGLU)):
|
1598 |
+
raise ValueError(f"Parallel prenorm layer must have parallel MLP layer: {type(pretrained_layer.mlp)}")
|
1599 |
+
tile_linear(
|
1600 |
+
pretrained_layer.Wqkvff,
|
1601 |
+
new_model_layer.Wqkvff,
|
1602 |
+
linear_type=TileLinear.wqkvff,
|
1603 |
+
mode=mode,
|
1604 |
+
pretrained_attn_size=pretrained_layer.attn_size,
|
1605 |
+
pretrained_mlp_size=pretrained_layer.mlp_size,
|
1606 |
+
new_attn_size=new_model_layer.attn_size,
|
1607 |
+
new_mlp_size=new_model_layer.mlp_size,
|
1608 |
+
wqkvff_is_glu=True,
|
1609 |
+
)
|
1610 |
+
|
1611 |
+
# then try the fused attention layers
|
1612 |
+
elif isinstance(
|
1613 |
+
pretrained_layer.attn,
|
1614 |
+
(
|
1615 |
+
FlexBertUnpadAttention,
|
1616 |
+
FlexBertPaddedAttention,
|
1617 |
+
FlexBertUnpadRopeAttention,
|
1618 |
+
FlexBertPaddedRopeAttention,
|
1619 |
+
),
|
1620 |
+
):
|
1621 |
+
tile_linear(pretrained_layer.attn.Wqkv, new_model_layer.attn.Wqkv, linear_type=TileLinear.wqkv, mode=mode)
|
1622 |
+
else:
|
1623 |
+
raise ValueError(f"Unsupported attention layer type: {type(pretrained_layer.attn)}")
|
1624 |
+
|
1625 |
+
# finally, tile the attention output layer
|
1626 |
+
tile_linear(pretrained_layer.attn.Wo, new_model_layer.attn.Wo, linear_type=TileLinear.default, mode=mode)
|
1627 |
+
|
1628 |
+
# tile the mlp layer if the model is not using parallel attention layers
|
1629 |
+
if not isinstance(pretrained_layer.mlp, (FlexBertMLP, FlexBertGLU, FlexBertParallelGLU)):
|
1630 |
+
raise ValueError(f"Unsupported MLP layer type: {type(pretrained_layer.mlp)}")
|
1631 |
+
assert isinstance(
|
1632 |
+
new_model_layer.mlp, type(pretrained_layer.mlp)
|
1633 |
+
), f"Pretrained and new_model mlp layers must be the same type, got {type(new_model_layer.mlp)} and {type(pretrained_layer.mlp)}"
|
1634 |
+
|
1635 |
+
# already tiled the parallel glu layer if it exists, so only need to handle mlp & glu Wi
|
1636 |
+
if isinstance(pretrained_layer.mlp, FlexBertGLU):
|
1637 |
+
tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.glu, mode=mode)
|
1638 |
+
elif isinstance(pretrained_layer.mlp, FlexBertMLP):
|
1639 |
+
tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.default, mode=mode)
|
1640 |
+
# tile the output for both ParallelGLU and MLP/GLU
|
1641 |
+
tile_linear(pretrained_layer.mlp.Wo, new_model_layer.mlp.Wo, linear_type=TileLinear.default, mode=mode)
|
1642 |
+
|
1643 |
+
|
1644 |
+
def init_mlm_model_from_pretrained(
|
1645 |
+
config: FlexBertConfig,
|
1646 |
+
pretrained_model: FlexBertForMaskedLM,
|
1647 |
+
new_model: FlexBertForMaskedLM,
|
1648 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
1649 |
+
):
|
1650 |
+
"""
|
1651 |
+
Initialize the new model from the pretrained model.
|
1652 |
+
|
1653 |
+
This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
|
1654 |
+
The new model must have the same or more layers and the same or larger dimensions than the pretrained model.
|
1655 |
+
|
1656 |
+
Args:
|
1657 |
+
config (FlexBertConfig): The configuration of the new_model
|
1658 |
+
pretrained_model (FlexBertForMaskedLM): The smaller, pre-trained model
|
1659 |
+
new_model (FlexBertForMaskedLM): The larger model to be initialized from the pretrained model
|
1660 |
+
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
|
1661 |
+
|
1662 |
+
This function assumes that the new_model has more layers and a larger hidden size
|
1663 |
+
than the pretrained_model, but the same vocabulary size.
|
1664 |
+
"""
|
1665 |
+
init_model_from_pretrained(pretrained_model.bert, new_model.bert, mode=mode)
|
1666 |
+
|
1667 |
+
# TODO: uncomment this when the repo is turned into a pip installable package
|
1668 |
+
# if not isinstance(pretrained_model.head, FlexBertPredictionHead):
|
1669 |
+
# raise ValueError(f"Pretrained model must have a prediction head: {type(pretrained_model.head)}")
|
1670 |
+
# if not isinstance(new_model.head, FlexBertPredictionHead):
|
1671 |
+
# raise ValueError(f"New model must have a prediction head: {type(new_model.head)}")
|
1672 |
+
|
1673 |
+
# tile the prediction head
|
1674 |
+
tile_linear(pretrained_model.head.dense, new_model.head.dense, linear_type=TileLinear.default, mode=mode)
|
1675 |
+
tile_norm(pretrained_model.head.norm, new_model.head.norm, mode=mode)
|
1676 |
+
|
1677 |
+
# setup weight tying
|
1678 |
+
if config.tie_word_embeddings:
|
1679 |
+
new_model.decoder.weight = new_model.bert.embeddings.tok_embeddings.weight
|
1680 |
+
tile_linear(
|
1681 |
+
pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode, bias_only=True
|
1682 |
+
)
|
1683 |
+
else:
|
1684 |
+
tile_linear(pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode)
|
normalization.py
CHANGED
@@ -10,7 +10,7 @@ import torch
|
|
10 |
import torch.nn as nn
|
11 |
from torch.nn import init
|
12 |
|
13 |
-
from configuration_bert import FlexBertConfig
|
14 |
|
15 |
try:
|
16 |
from flash_attn.ops.triton.layer_norm import RMSNorm as TritonRMSNorm
|
|
|
10 |
import torch.nn as nn
|
11 |
from torch.nn import init
|
12 |
|
13 |
+
from .configuration_bert import FlexBertConfig
|
14 |
|
15 |
try:
|
16 |
from flash_attn.ops.triton.layer_norm import RMSNorm as TritonRMSNorm
|
options.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
from normalization import NORM2CLS
|
2 |
-
from embeddings import EBB2CLS
|
3 |
-
from activation import ACT2CLS
|
4 |
-
from attention import ATTN2CLS
|
5 |
-
from mlp import MLP2CLS
|
6 |
-
from layers import LAYER2CLS
|
7 |
|
8 |
|
9 |
def print_layer_options():
|
|
|
1 |
+
from .normalization import NORM2CLS
|
2 |
+
from .embeddings import EBB2CLS
|
3 |
+
from .activation import ACT2CLS
|
4 |
+
from .attention import ATTN2CLS
|
5 |
+
from .mlp import MLP2CLS
|
6 |
+
from .layers import LAYER2CLS
|
7 |
|
8 |
|
9 |
def print_layer_options():
|