RITA_m / rita_modeling.py
DanielHesslow's picture
add model
ae25659
raw
history blame
17.8 kB
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss
from transformers.modeling_outputs import (
BaseModelOutput,
CausalLMOutput,
SequenceClassifierOutput
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .rita_configuration import RITAConfig
import torch.nn.functional as F
logger = logging.get_logger(__name__)
@torch.jit.script
def RITA_gelu(hidden_states):
return hidden_states * 0.5 * (1.0 + torch.tanh(0.79788456 * hidden_states * (1 + 0.044715 * hidden_states * hidden_states)))
class RITAGELU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states):
return RITA_gelu(hidden_states)
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=x1.ndim - 1)
class RotaryEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
assert config.d_model % config.num_heads == 0
self.d_model = config.d_model
self.num_heads = config.num_heads
self.max_seq_len = config.max_seq_len
head_dim = self.d_model // self.num_heads
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x: torch.FloatTensor, seq_dim=1) -> torch.FloatTensor:
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, None, :, :]
self.sin_cached = emb.sin()[None, None, :, :]
return self.cos_cached, self.sin_cached
def apply_rotary_pos_emb(self, q, k, cos, sin):
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class SelfAttention(nn.Module):
"""Implementation of MultiHeadAttention following `Karpathy's MinGPT <https://github.com/karpathy/minGPT>`_.
modified to use rotary embeddings.
Parameters
----------
d_model: int,
total dimension of the model.
num_heads: int,
number of parallel attention heads.
num_layers: int,
number of layers in the model, used for the Megatron-like init.
rotaty_embedding: Optional[Block], default None,
a RotaryEmbedding Block to add positionnal information in Queries and Keys
dropout: float, default 0.1,
amount of dropout on the attention weights.
sigma: float, default 0.02,
standard deviation used for the init.
trainable: bool, default True,
if False, the Module parameters will be hidden from the optimizer.
"""
def __init__(
self,
d_model: int,
num_heads: int,
num_layers: int,
rotary_embedding= None,
dropout: float = 0.1,
sigma=0.02,
use_cache: bool = False,
bias=True,
):
super().__init__()
assert d_model % num_heads == 0
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = self.d_model // self.num_heads
self.num_layers = num_layers
self.dropout = dropout
self.sigma = sigma
self.bias = bias
# key, query, value projections for all heads
self.key = nn.Linear(d_model, d_model, bias=bias)
self.query = nn.Linear(d_model, d_model, bias=bias)
self.value = nn.Linear(d_model, d_model, bias=bias)
# regularization
self.attn_drop = nn.Dropout(dropout)
self.resid_drop = nn.Dropout(dropout)
# output projection
self.proj = nn.Linear(d_model, d_model, bias=bias)
self.rotary_embedding = rotary_embedding
self.layer_id = None # will be set by the Transformer itself
self.use_cache = use_cache
self.qkv = None
self.bias = bias
def forward(
self,
x,
attn_mask: Optional[torch.BoolTensor] = None,
padding_mask: Optional[torch.BoolTensor] = None,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
N, L, D = x.size() # Batch_size, Context_size, d_model
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = (
self.key(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
q = (
self.query(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
v = (
self.value(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
if self.rotary_embedding is not None:
cos, sin = self.rotary_embedding(x)
q, k = self.rotary_embedding.apply_rotary_pos_emb(q, k, cos, sin)
# causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
if attn_mask is not None:
att[:,:,-L:, -L: ].masked_fill_(attn_mask.view(1, 1, L, L), float("-inf"))
att = (
att.transpose(0, 2)
.masked_fill(padding_mask.view(1, 1, N, L), float("-inf"))
.transpose(0, 2)
if padding_mask is not None
else att
)
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (N, nh, L, L) x (N, nh, L, hs) -> (N, nh, L, hs)
y = (
y.transpose(1, 2).contiguous().view(N, L, D)
) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class DecoderLayer(nn.Module):
"""Transformer block containing the self-attention module and the feedfoward module."""
def __init__(
self, config
):
super().__init__()
self.self_attention = SelfAttention(config.d_model, config.num_heads, config.dropout, rotary_embedding=RotaryEmbedding(config))
self.attn_norm = nn.LayerNorm(config.d_model)
self.attn_dropout = nn.Dropout(config.dropout)
self.mlp = nn.Sequential(
nn.Linear(config.d_model, config.d_feedforward, bias=True),
RITAGELU(),
nn.Linear(config.d_feedforward, config.d_model, bias=True),
)
self.mlp_norm = nn.LayerNorm(config.d_model)
self.mlp_dropout = nn.Dropout(config.dropout)
def forward(
self,
x: torch.FloatTensor,
attn_mask: torch.BoolTensor,
padding_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
y = self.attn_norm(x)
y = self.self_attention(y, attn_mask=attn_mask, padding_mask=padding_mask)
x = x + self.attn_dropout(y)
y = self.mlp_norm(x)
y = self.mlp(y)
x = x + self.mlp_dropout(y)
return x
class RITAModel(PreTrainedModel):
config_class = RITAConfig
base_model_prefix = "transformer"
is_parallelizable = False
def __init__(
self,
config
):
super().__init__(config)
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
self.final_norm = nn.LayerNorm(config.d_model)
def forward(
self,
input_ids=None,
past_key_values=None, # NOT USED
attention_mask=None,
token_type_ids=None, # NOT USED
position_ids=None, # NOT USED
head_mask=None, # NOT USED
inputs_embeds=None,
encoder_hidden_states=None, # NOT USED
encoder_attention_mask=None, # NOT USED
labels=None,
use_cache=None, # NOT USED
output_attentions=None, # NOT USED
output_hidden_states=None, # NOT USED
return_dict=None # NOT USED
) -> torch.FloatTensor:
if inputs_embeds == None:
x = self.embedding(input_ids) # N x L x D
else:
x = inputs_embeds
if attention_mask == None:
attention_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device)
for layer in self.layers:
x = layer(x, attn_mask=attention_mask)
x = self.final_norm(x) # N x L x D
return BaseModelOutput(
hidden_states=x,
)
#Some common HF functions.
def get_input_embeddings(self):
return self.embedding
def set_input_embeddings(self, new_embeddings):
self.embedding = new_embeddings
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class RITAModelForCausalLM(PreTrainedModel):
config_class = RITAConfig
base_model_prefix = "transformer"
is_parallelizable = False
def __init__(
self,
config
):
super().__init__(config)
self.transformer = RITAModel(config)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
def forward(
self,
input_ids=None,
past_key_values=None, # NOT USED
attention_mask=None,
token_type_ids=None, # NOT USED
position_ids=None, # NOT USED
head_mask=None, # NOT USED
inputs_embeds=None,
encoder_hidden_states=None, # NOT USED
encoder_attention_mask=None, # NOT USED
labels=None,
use_cache=None, # NOT USED
output_attentions=None, # NOT USED
output_hidden_states=None, # NOT USED
return_dict=None # NOT USED
) -> torch.FloatTensor:
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(transformer_outputs.hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
return CausalLMOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
)
#Some common HF functions.
def get_input_embeddings(self):
return self.transformer.embedding
def set_input_embeddings(self, new_embeddings):
self.transformer.embedding = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, lm_head):
self.lm_head = lm_head
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class RITAModelForSequenceClassification(PreTrainedModel):
config_class = RITAConfig
base_model_prefix = "transformer"
is_parallelizable = False
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = RITAModel(config)
self.score = nn.Linear(config.d_model, self.num_labels, bias=False)
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=self.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=pooled_logits,
)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)