Tom Aarsen
commited on
Commit
·
96fbb87
1
Parent(s):
ad207b7
Update README outputs + dim (768 -> 1024)
Browse files
README.md
CHANGED
@@ -2950,12 +2950,12 @@ doc_embeddings = model.encode([
|
|
2950 |
"search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten",
|
2951 |
])
|
2952 |
print(query_embeddings.shape, doc_embeddings.shape)
|
2953 |
-
# (2,
|
2954 |
|
2955 |
similarities = model.similarity(query_embeddings, doc_embeddings)
|
2956 |
print(similarities)
|
2957 |
-
# tensor([[0.
|
2958 |
-
# [0.
|
2959 |
```
|
2960 |
|
2961 |
<details><summary>Click to see Sentence Transformers usage with Matryoshka Truncation</summary>
|
@@ -2979,8 +2979,8 @@ print(query_embeddings.shape, doc_embeddings.shape)
|
|
2979 |
|
2980 |
similarities = model.similarity(query_embeddings, doc_embeddings)
|
2981 |
print(similarities)
|
2982 |
-
# tensor([[0.
|
2983 |
-
# [0.
|
2984 |
```
|
2985 |
|
2986 |
Note the small differences compared to the full 1024-dimensional similarities.
|
@@ -3023,12 +3023,12 @@ query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
|
3023 |
doc_embeddings = mean_pooling(documents_outputs, encoded_documents["attention_mask"])
|
3024 |
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
|
3025 |
print(query_embeddings.shape, doc_embeddings.shape)
|
3026 |
-
# torch.Size([2,
|
3027 |
|
3028 |
similarities = query_embeddings @ doc_embeddings.T
|
3029 |
print(similarities)
|
3030 |
-
# tensor([[0.
|
3031 |
-
# [0.
|
3032 |
```
|
3033 |
|
3034 |
<details><summary>Click to see Transformers usage with Matryoshka Truncation</summary>
|
@@ -3076,11 +3076,11 @@ print(query_embeddings.shape, doc_embeddings.shape)
|
|
3076 |
|
3077 |
similarities = query_embeddings @ doc_embeddings.T
|
3078 |
print(similarities)
|
3079 |
-
# tensor([[0.
|
3080 |
-
# [0.
|
3081 |
```
|
3082 |
|
3083 |
-
Note the small differences compared to the full
|
3084 |
|
3085 |
</details>
|
3086 |
|
@@ -3116,7 +3116,7 @@ const doc_embeddings = await extractor([
|
|
3116 |
|
3117 |
// Compute similarity scores
|
3118 |
const similarities = await matmul(query_embeddings, doc_embeddings.transpose(1, 0));
|
3119 |
-
console.log(similarities.tolist());
|
3120 |
```
|
3121 |
|
3122 |
|
|
|
2950 |
"search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten",
|
2951 |
])
|
2952 |
print(query_embeddings.shape, doc_embeddings.shape)
|
2953 |
+
# (2, 1024) (1, 1024)
|
2954 |
|
2955 |
similarities = model.similarity(query_embeddings, doc_embeddings)
|
2956 |
print(similarities)
|
2957 |
+
# tensor([[0.6518],
|
2958 |
+
# [0.4237]])
|
2959 |
```
|
2960 |
|
2961 |
<details><summary>Click to see Sentence Transformers usage with Matryoshka Truncation</summary>
|
|
|
2979 |
|
2980 |
similarities = model.similarity(query_embeddings, doc_embeddings)
|
2981 |
print(similarities)
|
2982 |
+
# tensor([[0.6835],
|
2983 |
+
# [0.3982]])
|
2984 |
```
|
2985 |
|
2986 |
Note the small differences compared to the full 1024-dimensional similarities.
|
|
|
3023 |
doc_embeddings = mean_pooling(documents_outputs, encoded_documents["attention_mask"])
|
3024 |
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
|
3025 |
print(query_embeddings.shape, doc_embeddings.shape)
|
3026 |
+
# torch.Size([2, 1024]) torch.Size([1, 1024])
|
3027 |
|
3028 |
similarities = query_embeddings @ doc_embeddings.T
|
3029 |
print(similarities)
|
3030 |
+
# tensor([[0.6518],
|
3031 |
+
# [0.4237]])
|
3032 |
```
|
3033 |
|
3034 |
<details><summary>Click to see Transformers usage with Matryoshka Truncation</summary>
|
|
|
3076 |
|
3077 |
similarities = query_embeddings @ doc_embeddings.T
|
3078 |
print(similarities)
|
3079 |
+
# tensor([[0.6835],
|
3080 |
+
# [0.3982]])
|
3081 |
```
|
3082 |
|
3083 |
+
Note the small differences compared to the full 1024-dimensional similarities.
|
3084 |
|
3085 |
</details>
|
3086 |
|
|
|
3116 |
|
3117 |
// Compute similarity scores
|
3118 |
const similarities = await matmul(query_embeddings, doc_embeddings.transpose(1, 0));
|
3119 |
+
console.log(similarities.tolist());
|
3120 |
```
|
3121 |
|
3122 |
|