|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch.nn as nn |
|
from torch import Tensor |
|
from transformers import PreTrainedModel |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutputWithNoAttention |
|
|
|
from .configuration_resnet import ResNet10Config |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation, stride=1, norm_groups=4): |
|
super().__init__() |
|
|
|
self.conv1 = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=False, |
|
) |
|
self.norm1 = nn.GroupNorm(num_groups=norm_groups, num_channels=out_channels) |
|
self.act1 = ACT2FN[activation] |
|
self.act2 = ACT2FN[activation] |
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.norm2 = nn.GroupNorm(num_groups=norm_groups, num_channels=out_channels) |
|
|
|
|
|
self.shortcut_conv = None |
|
self.shortcut_norm = None |
|
if in_channels != out_channels: |
|
self.shortcut_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) |
|
self.shortcut_norm = nn.GroupNorm(num_groups=norm_groups, num_channels=out_channels) |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.norm1(out) |
|
out = self.act1(out) |
|
|
|
out = self.conv2(out) |
|
out = self.norm2(out) |
|
|
|
if self.shortcut_conv is not None: |
|
identity = self.shortcut_conv(identity) |
|
identity = self.shortcut_norm(identity) |
|
|
|
out = out + identity |
|
out = self.act2(out) |
|
|
|
return out |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, config: ResNet10Config): |
|
super().__init__() |
|
self.config = config |
|
self.stages = nn.ModuleList([]) |
|
|
|
for i, size in enumerate(self.config.hidden_sizes): |
|
if i == 0: |
|
self.stages.append( |
|
BasicBlock( |
|
self.config.embedding_size, |
|
size, |
|
activation=self.config.hidden_act, |
|
) |
|
) |
|
else: |
|
self.stages.append( |
|
BasicBlock( |
|
self.config.hidden_sizes[i - 1], |
|
size, |
|
activation=self.config.hidden_act, |
|
stride=2, |
|
) |
|
) |
|
|
|
def forward(self, hidden_state: Tensor, output_hidden_states: bool = False) -> BaseModelOutputWithNoAttention: |
|
hidden_states = () if output_hidden_states else None |
|
|
|
for stage in self.stages: |
|
if output_hidden_states: |
|
hidden_states = hidden_states + (hidden_state,) |
|
|
|
hidden_state = stage(hidden_state) |
|
|
|
if output_hidden_states: |
|
hidden_states = hidden_states + (hidden_state,) |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=hidden_state, |
|
hidden_states=hidden_states, |
|
) |
|
|
|
class JaxStyleMaxPool(nn.Module): |
|
def forward(self, x): |
|
x = nn.functional.pad(x, (0, 1, 0, 1), value=-float('inf')) |
|
return nn.MaxPool2d(kernel_size=3, stride=2, padding=0)(x) |
|
|
|
class ResNet10(PreTrainedModel): |
|
config_class = ResNet10Config |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embedder = nn.Sequential( |
|
nn.Conv2d( |
|
self.config.num_channels, |
|
self.config.embedding_size, |
|
kernel_size=7, |
|
stride=2, |
|
padding=3, |
|
bias=False, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nn.GroupNorm(num_groups=4, eps=1e-5, num_channels=self.config.embedding_size), |
|
ACT2FN[self.config.hidden_act], |
|
|
|
JaxStyleMaxPool() |
|
) |
|
|
|
self.encoder = Encoder(self.config) |
|
|
|
def forward(self, x: Tensor, output_hidden_states: Optional[bool] = None) -> BaseModelOutputWithNoAttention: |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
embedding_output = self.embedder(x) |
|
encoder_outputs = self.encoder(embedding_output, output_hidden_states=output_hidden_states) |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=encoder_outputs.last_hidden_state, |
|
hidden_states=encoder_outputs.hidden_states, |
|
) |
|
|
|
def print_model_hash(self): |
|
print("Model parameters hashes:") |
|
for name, param in self.named_parameters(): |
|
print(name, param.sum()) |
|
|