linoyts HF staff commited on
Commit
c1c4cf3
·
verified ·
1 Parent(s): 66435bf

End of training

Browse files
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: black-forest-labs/FLUX.1-dev
3
+ library_name: diffusers
4
+ license: other
5
+ tags:
6
+ - text-to-image
7
+ - diffusers-training
8
+ - diffusers
9
+ - lora
10
+ - flux
11
+ - flux-diffusers
12
+ - template:sd-lora
13
+ instance_prompt: a <s0> woman
14
+ widget: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the training script had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+
21
+ # Flux DreamBooth LoRA - linoyts/linoy_v_750_no_captions
22
+
23
+ <Gallery />
24
+
25
+ ## Model description
26
+
27
+ These are linoyts/linoy_v_750_no_captions DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev.
28
+
29
+ The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).
30
+
31
+ Was LoRA for the text encoder enabled? False.
32
+
33
+ Pivotal tuning was enabled: True.
34
+
35
+ ## Trigger words
36
+
37
+ To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
38
+
39
+ to trigger concept `TOK` → use `<s0>` in your prompt
40
+
41
+
42
+
43
+ ## Download model
44
+
45
+ [Download the *.safetensors LoRA](linoyts/linoy_v_750_no_captions/tree/main) in the Files & versions tab.
46
+
47
+ ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
48
+
49
+ ```py
50
+ from diffusers import AutoPipelineForText2Image
51
+ import torch
52
+ from huggingface_hub import hf_hub_download
53
+ from safetensors.torch import load_file
54
+
55
+ pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
56
+ pipeline.load_lora_weights('linoyts/linoy_v_750_no_captions', weight_name='pytorch_lora_weights.safetensors')
57
+ embedding_path = hf_hub_download(repo_id='linoyts/linoy_v_750_no_captions', filename='linoy_v_750_no_captions_emb.safetensors', repo_type="model")
58
+ state_dict = load_file(embedding_path)
59
+ pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
60
+
61
+ image = pipeline('a <s0> woman').images[0]
62
+ ```
63
+
64
+ For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
65
+
66
+ ## License
67
+
68
+ Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
69
+
70
+
71
+ ## Intended uses & limitations
72
+
73
+ #### How to use
74
+
75
+ ```python
76
+ # TODO: add an example code snippet for running this diffusion pipeline
77
+ ```
78
+
79
+ #### Limitations and bias
80
+
81
+ [TODO: provide examples of latent issues and potential remediations]
82
+
83
+ ## Training details
84
+
85
+ [TODO: describe the data used to train the model]
linoy_v_750_no_captions_emb.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a50eb5ff00f0419f3342e800066ee426b975a676c70bc4419ff4930653961ca0
3
+ size 3152
pytorch_lora_weights.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af19d39f0e43ea76d26be35c8427b40d252f4c1097e15f56cdb35ec4c7e2cbb5
3
+ size 37406344