File size: 2,223 Bytes
15cd789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: other
library_name: diffusers
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: a Yarn art style tarot card
widget: []
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# Flux DreamBooth LoRA - linoyts/yarn_art_flux_1_500_custom

<Gallery />

## Model description

These are linoyts/yarn_art_flux_1_500_custom DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev.

The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).

Was LoRA for the text encoder enabled? False.

## Trigger words

You should use `a Yarn art style tarot card` to trigger the image generation.

## Download model

[Download the *.safetensors LoRA](linoyts/yarn_art_flux_1_500_custom/tree/main) in the Files & versions tab.

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('linoyts/yarn_art_flux_1_500_custom', weight_name='pytorch_lora_weights.safetensors')
image = pipeline('a Yarn art style tarot card').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)

## License

Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).


## Intended uses & limitations

#### How to use

```python
# TODO: add an example code snippet for running this diffusion pipeline
```

#### Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

[TODO: describe the data used to train the model]