huxy912 commited on
Commit
c1ac977
·
1 Parent(s): f9d286a
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/huxuyang/LLaMA-MoE-v2/outputs/v2_mixtral/moe-res-droppad-nosys-all/3689429/checkpoint-5400",
3
+ "add_rescale_bias": false,
4
+ "architectures": [
5
+ "MixtralForCausalLM"
6
+ ],
7
+ "attention_bias": false,
8
+ "attention_dropout": 0.0,
9
+ "attn_experts": null,
10
+ "auto_map": {
11
+ "AutoConfig": "configuration_mixtral.MixtralConfig",
12
+ "AutoModel": "modeling_mixtral.MixtralModel",
13
+ "AutoModelForCausalLM": "modeling_mixtral.MixtralForCausalLM"
14
+ },
15
+ "bos_token_id": 128000,
16
+ "eos_token_id": 128009,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 4096,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 1792,
21
+ "intermediate_size_residual": 1792,
22
+ "max_position_embeddings": 8192,
23
+ "model_type": "mixtral",
24
+ "moe_type": "modulelist",
25
+ "num_attention_heads": 32,
26
+ "num_experts_per_tok": 1,
27
+ "num_hidden_layers": 32,
28
+ "num_key_value_heads": 8,
29
+ "num_local_experts": 7,
30
+ "num_moe_contract_layers": 0,
31
+ "output_router_logits": true,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 500000.0,
36
+ "router_aux_loss_coef": 0.01,
37
+ "scale_factor": 4.0,
38
+ "scale_factor_attn": null,
39
+ "sliding_window": 4096,
40
+ "tie_word_embeddings": false,
41
+ "top_k_attn": null,
42
+ "torch_dtype": "bfloat16",
43
+ "transformers_version": "4.42.4",
44
+ "use_attn_moe": false,
45
+ "use_cache": false,
46
+ "use_layer_wise_balance": false,
47
+ "vocab_size": 128256
48
+ }
configuration_mixtral.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Mixtral model configuration"""
16
+
17
+ import copy
18
+ from typing import Any, Dict
19
+
20
+ from transformers import __version__
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.utils import logging
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+ MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
27
+ "mistral-ai/Mixtral-8x7B": "https://huggingface.co/mistral-ai/Mixtral-8x7B/resolve/main/config.json",
28
+ }
29
+
30
+
31
+ def recursive_diff_dict(dict_a, dict_b, config_obj=None):
32
+ """
33
+ Helper function to recursively take the diff between two nested dictionaries. The resulting diff only contains the
34
+ values from `dict_a` that are different from values in `dict_b`.
35
+ """
36
+ diff = {}
37
+ default = config_obj.__class__().to_dict() if config_obj is not None else {}
38
+ for key, value in dict_a.items():
39
+ obj_value = getattr(config_obj, str(key), None)
40
+ if (
41
+ isinstance(obj_value, PretrainedConfig)
42
+ and key in dict_b
43
+ and isinstance(dict_b[key], dict)
44
+ ):
45
+ diff_value = recursive_diff_dict(value, dict_b[key], config_obj=obj_value)
46
+ if len(diff_value) > 0:
47
+ diff[key] = diff_value
48
+ elif (
49
+ key not in dict_b
50
+ or value != dict_b[key]
51
+ or key not in default
52
+ or value != default[key]
53
+ ):
54
+ diff[key] = value
55
+ return diff
56
+
57
+
58
+ class MixtralConfig(PretrainedConfig):
59
+ r"""
60
+ This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
61
+ Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
62
+ with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.
63
+
64
+ [mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
65
+ [mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)
66
+
67
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
68
+ documentation from [`PretrainedConfig`] for more information.
69
+
70
+
71
+ Args:
72
+ vocab_size (`int`, *optional*, defaults to 32000):
73
+ Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
74
+ `inputs_ids` passed when calling [`MixtralModel`]
75
+ hidden_size (`int`, *optional*, defaults to 4096):
76
+ Dimension of the hidden representations.
77
+ intermediate_size (`int`, *optional*, defaults to 14336):
78
+ Dimension of the MLP representations.
79
+ num_hidden_layers (`int`, *optional*, defaults to 32):
80
+ Number of hidden layers in the Transformer encoder.
81
+ num_attention_heads (`int`, *optional*, defaults to 32):
82
+ Number of attention heads for each attention layer in the Transformer encoder.
83
+ num_key_value_heads (`int`, *optional*, defaults to 8):
84
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
85
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
86
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
87
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
88
+ by meanpooling all the original heads within that group. For more details checkout [this
89
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
90
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
91
+ The non-linear activation function (function or string) in the decoder.
92
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
93
+ The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
94
+ allows sequence of up to 4096*32 tokens.
95
+ initializer_range (`float`, *optional*, defaults to 0.02):
96
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
97
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
98
+ The epsilon used by the rms normalization layers.
99
+ use_cache (`bool`, *optional*, defaults to `True`):
100
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
101
+ relevant if `config.is_decoder=True`.
102
+ pad_token_id (`int`, *optional*):
103
+ The id of the padding token.
104
+ bos_token_id (`int`, *optional*, defaults to 1):
105
+ The id of the "beginning-of-sequence" token.
106
+ eos_token_id (`int`, *optional*, defaults to 2):
107
+ The id of the "end-of-sequence" token.
108
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
109
+ Whether the model's input and output word embeddings should be tied.
110
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
111
+ The base period of the RoPE embeddings.
112
+ sliding_window (`int`, *optional*, defaults to 4096):
113
+ Sliding window attention window size. If not specified, will default to `4096`.
114
+ attention_dropout (`float`, *optional*, defaults to 0.0):
115
+ The dropout ratio for the attention probabilities.
116
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
117
+ The number of experts to root per-token, can be also interpreted as the `top-p` routing
118
+ parameter
119
+ num_local_experts (`int`, *optional*, defaults to 8):
120
+ Number of experts per Sparse MLP layer.
121
+ output_router_logits (`bool`, *optional*, defaults to `False`):
122
+ Whether or not the router logits should be returned by the model. Enabeling this will also
123
+ allow the model to output the auxiliary loss. See [here]() for more details
124
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
125
+ The aux loss factor for the total loss.
126
+
127
+ ```python
128
+ >>> from transformers import MixtralModel, MixtralConfig
129
+
130
+ >>> # Initializing a Mixtral 7B style configuration
131
+ >>> configuration = MixtralConfig()
132
+
133
+ >>> # Initializing a model from the Mixtral 7B style configuration
134
+ >>> model = MixtralModel(configuration)
135
+
136
+ >>> # Accessing the model configuration
137
+ >>> configuration = model.config
138
+ ```"""
139
+
140
+ model_type = "mixtral"
141
+ keys_to_ignore_at_inference = ["past_key_values"]
142
+
143
+ def __init__(
144
+ self,
145
+ vocab_size=32000,
146
+ hidden_size=4096,
147
+ intermediate_size=14336,
148
+ intermediate_size_residual=None, # 🔍
149
+ num_hidden_layers=32,
150
+ num_attention_heads=32,
151
+ num_key_value_heads=8,
152
+ hidden_act="silu",
153
+ max_position_embeddings=4096 * 32,
154
+ initializer_range=0.02,
155
+ rms_norm_eps=1e-5,
156
+ use_cache=True,
157
+ pad_token_id=None,
158
+ bos_token_id=1,
159
+ eos_token_id=2,
160
+ tie_word_embeddings=False,
161
+ rope_theta=1e6,
162
+ sliding_window=4096,
163
+ attention_dropout=0.0,
164
+ num_experts_per_tok=2,
165
+ num_local_experts=8,
166
+ scale_factor: float = 1.0, # 🔍
167
+ output_router_logits=False,
168
+ router_aux_loss_coef=0.001,
169
+ moe_type: str = "modulelist", # 🔍
170
+ num_moe_contract_layers: int = 0, # 🔍 the number of layers that are not converted into MoE at each side of the model
171
+ use_attn_moe: bool = False, # 🔍
172
+ top_k_attn: int = None, # 🔍
173
+ attn_experts: int = None,
174
+ scale_factor_attn: float = None, # 🔍
175
+ use_layer_wise_balance: bool = False, # ✨ whether to fix the balance loss bug for Mixtral
176
+ add_rescale_bias: bool = False, # 🔍 whether to add bias to the AttentionMoE `o_proj` & MoE `down_proj` for distribution alignment
177
+ **kwargs,
178
+ ):
179
+ self.vocab_size = vocab_size
180
+ self.max_position_embeddings = max_position_embeddings
181
+ self.hidden_size = hidden_size
182
+ self.intermediate_size = intermediate_size
183
+ self.intermediate_size_residual = intermediate_size_residual # 🔍
184
+ self.num_hidden_layers = num_hidden_layers
185
+ self.num_attention_heads = num_attention_heads
186
+ self.sliding_window = sliding_window
187
+
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = rms_norm_eps
196
+ self.use_cache = use_cache
197
+ self.rope_theta = rope_theta
198
+ self.attention_dropout = attention_dropout
199
+
200
+ self.num_experts_per_tok = num_experts_per_tok
201
+ self.num_local_experts = num_local_experts
202
+ self.scale_factor = scale_factor # 🔍
203
+ self.output_router_logits = output_router_logits
204
+ self.router_aux_loss_coef = router_aux_loss_coef
205
+ self.moe_type = moe_type # 🔍
206
+ self.num_moe_contract_layers = num_moe_contract_layers # 🔍
207
+
208
+ # 🔍 for Attention MoE
209
+ self.use_attn_moe = use_attn_moe
210
+ self.top_k_attn = top_k_attn
211
+ self.scale_factor_attn = scale_factor_attn
212
+ self.attn_experts = attn_experts
213
+
214
+ # ✨ For balance loss bugfix
215
+ self.use_layer_wise_balance = use_layer_wise_balance
216
+
217
+ # 🔍 for distribution alignment
218
+ self.add_rescale_bias = add_rescale_bias
219
+
220
+ # Attention implementation to use, if relevant.
221
+ self._attn_implementation_internal = kwargs.pop("attn_implementation", None)
222
+
223
+ super().__init__(
224
+ pad_token_id=pad_token_id,
225
+ bos_token_id=bos_token_id,
226
+ eos_token_id=eos_token_id,
227
+ tie_word_embeddings=tie_word_embeddings,
228
+ **kwargs,
229
+ )
230
+
231
+ @property
232
+ def _attn_implementation(self):
233
+ # This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.)
234
+ if hasattr(self, "_attn_implementation_internal"):
235
+ if self._attn_implementation_internal is None:
236
+ # `config.attn_implementation` should never be None, for backward compatibility.
237
+ return "flash_attention_2"
238
+ # return "eager"
239
+ else:
240
+ return self._attn_implementation_internal
241
+ else:
242
+ return "flash_attention_2"
243
+ # return "eager"
244
+
245
+
246
+
247
+ @_attn_implementation.setter
248
+ def _attn_implementation(self, value):
249
+ self._attn_implementation_internal = value
250
+
251
+ def to_dict(self) -> Dict[str, Any]:
252
+ """
253
+ Serializes this instance to a Python dictionary.
254
+
255
+ Returns:
256
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
257
+ """
258
+ output = copy.deepcopy(self.__dict__)
259
+ if hasattr(self.__class__, "model_type"):
260
+ output["model_type"] = self.__class__.model_type
261
+ if "_auto_class" in output:
262
+ del output["_auto_class"]
263
+ if "_commit_hash" in output:
264
+ del output["_commit_hash"]
265
+ if "_attn_implementation_internal" in output:
266
+ del output["_attn_implementation_internal"]
267
+
268
+ # Transformers version when serializing the model
269
+ output["transformers_version"] = __version__
270
+
271
+ for key, value in output.items():
272
+ # Deal with nested configs like CLIP
273
+ if isinstance(value, PretrainedConfig):
274
+ value = value.to_dict()
275
+ del value["transformers_version"]
276
+
277
+ output[key] = value
278
+
279
+ if hasattr(self, "quantization_config"):
280
+ output["quantization_config"] = (
281
+ self.quantization_config.to_dict()
282
+ if not isinstance(self.quantization_config, dict)
283
+ else self.quantization_config
284
+ )
285
+
286
+ # pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
287
+ _ = output.pop("_pre_quantization_dtype", None)
288
+
289
+ self.dict_torch_dtype_to_str(output)
290
+
291
+ return output
292
+
293
+ def to_diff_dict(self) -> Dict[str, Any]:
294
+ """
295
+ Removes all attributes from config which correspond to the default config attributes for better readability and
296
+ serializes to a Python dictionary.
297
+
298
+ Returns:
299
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
300
+ """
301
+ config_dict = self.to_dict()
302
+
303
+ # get the default config dict
304
+ default_config_dict = PretrainedConfig().to_dict()
305
+
306
+ # get class specific config dict
307
+ class_config_dict = (
308
+ self.__class__().to_dict() if not self.is_composition else {}
309
+ )
310
+
311
+ serializable_config_dict = {}
312
+
313
+ # only serialize values that differ from the default config
314
+ for key, value in config_dict.items():
315
+ if (
316
+ isinstance(getattr(self, key, None), PretrainedConfig)
317
+ and key in class_config_dict
318
+ and isinstance(class_config_dict[key], dict)
319
+ ):
320
+ # For nested configs we need to clean the diff recursively
321
+ diff = recursive_diff_dict(
322
+ value, class_config_dict[key], config_obj=getattr(self, key, None)
323
+ )
324
+ if "model_type" in value:
325
+ # Needs to be set even if it's not in the diff
326
+ diff["model_type"] = value["model_type"]
327
+ if len(diff) > 0:
328
+ serializable_config_dict[key] = diff
329
+ elif (
330
+ key not in default_config_dict
331
+ or key == "transformers_version"
332
+ or value != default_config_dict[key]
333
+ or (key in class_config_dict and value != class_config_dict[key])
334
+ ):
335
+ serializable_config_dict[key] = value
336
+
337
+ if hasattr(self, "quantization_config"):
338
+ serializable_config_dict["quantization_config"] = (
339
+ self.quantization_config.to_dict()
340
+ if not isinstance(self.quantization_config, dict)
341
+ else self.quantization_config
342
+ )
343
+
344
+ # pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
345
+ _ = serializable_config_dict.pop("_pre_quantization_dtype", None)
346
+
347
+ self.dict_torch_dtype_to_str(serializable_config_dict)
348
+
349
+ if "_attn_implementation_internal" in serializable_config_dict:
350
+ del serializable_config_dict["_attn_implementation_internal"]
351
+
352
+ return serializable_config_dict
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128009
7
+ ],
8
+ "max_length": 4096,
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.42.4"
12
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc78c2e0d08d765c39938168f459de7ed7c1311ab5f30aad4f5798dc03df9525
3
+ size 4977240456
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8ed53a37dff862c69229dd41b77579064534bf49a7f295bfa2443eaf8ce7632
3
+ size 4985843216
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d38ddd0cecf4c73f33821fde2401fd8383c0d7ddbc1abb4254fe9ffdbe606fb
3
+ size 4989980392
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff417171325f63560668018de55d72141d291397142c3cd1d4e67b23fed3d71e
3
+ size 1109418920
model.safetensors.index.json ADDED
@@ -0,0 +1,1002 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16062357504
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.0.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.0.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.0.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
37
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
38
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
40
+ "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
41
+ "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
43
+ "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
45
+ "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
47
+ "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
48
+ "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
49
+ "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
50
+ "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
51
+ "model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
52
+ "model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
53
+ "model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
54
+ "model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
55
+ "model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
56
+ "model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
57
+ "model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
58
+ "model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
59
+ "model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
60
+ "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
61
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
62
+ "model.layers.1.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
63
+ "model.layers.1.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
64
+ "model.layers.1.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
65
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
66
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
67
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
68
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
69
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
70
+ "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.10.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.10.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.10.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.10.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.10.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.10.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.10.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.10.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.10.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.10.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.10.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.10.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.10.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.11.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.11.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.11.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.11.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.11.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.11.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.11.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.11.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.11.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.11.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.11.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.11.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.11.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.12.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.12.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.12.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.12.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.12.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.12.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.12.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.12.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.12.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.12.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.12.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.12.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.12.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
175
+ "model.layers.13.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
176
+ "model.layers.13.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.13.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
178
+ "model.layers.13.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.13.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.13.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
181
+ "model.layers.13.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.13.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.13.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.13.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
185
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
186
+ "model.layers.13.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
187
+ "model.layers.13.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
188
+ "model.layers.13.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
189
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
190
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
191
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
192
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
194
+ "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
195
+ "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
197
+ "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
198
+ "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
199
+ "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
200
+ "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
201
+ "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
202
+ "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
203
+ "model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
204
+ "model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
205
+ "model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
206
+ "model.layers.14.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
207
+ "model.layers.14.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
208
+ "model.layers.14.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
209
+ "model.layers.14.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
210
+ "model.layers.14.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
211
+ "model.layers.14.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
212
+ "model.layers.14.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
213
+ "model.layers.14.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
214
+ "model.layers.14.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
215
+ "model.layers.14.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
216
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
217
+ "model.layers.14.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
218
+ "model.layers.14.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
219
+ "model.layers.14.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
220
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
221
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
222
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
223
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
224
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
225
+ "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
226
+ "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
227
+ "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
228
+ "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
229
+ "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
230
+ "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
231
+ "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
232
+ "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
233
+ "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
234
+ "model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
235
+ "model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
236
+ "model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
237
+ "model.layers.15.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
238
+ "model.layers.15.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
239
+ "model.layers.15.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
240
+ "model.layers.15.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.15.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.15.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.15.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
244
+ "model.layers.15.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
245
+ "model.layers.15.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.15.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
248
+ "model.layers.15.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.15.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
250
+ "model.layers.15.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
251
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
254
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
263
+ "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
264
+ "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
265
+ "model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
266
+ "model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
267
+ "model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
268
+ "model.layers.16.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
269
+ "model.layers.16.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
270
+ "model.layers.16.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
271
+ "model.layers.16.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
272
+ "model.layers.16.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
273
+ "model.layers.16.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
274
+ "model.layers.16.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
275
+ "model.layers.16.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
276
+ "model.layers.16.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
277
+ "model.layers.16.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
278
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
279
+ "model.layers.16.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
280
+ "model.layers.16.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
281
+ "model.layers.16.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
282
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
283
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
284
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
287
+ "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
296
+ "model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.17.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.17.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.17.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
302
+ "model.layers.17.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.17.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.17.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
305
+ "model.layers.17.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.17.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
307
+ "model.layers.17.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.17.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.17.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.17.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.17.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
314
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
317
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
319
+ "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
326
+ "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
329
+ "model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.18.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
331
+ "model.layers.18.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.18.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.18.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.18.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.18.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.18.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.18.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
338
+ "model.layers.18.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.18.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
341
+ "model.layers.18.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.18.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
343
+ "model.layers.18.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
344
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
345
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
346
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
347
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
348
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
349
+ "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
350
+ "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
351
+ "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
352
+ "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
353
+ "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
354
+ "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
355
+ "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
356
+ "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
357
+ "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
358
+ "model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
359
+ "model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
360
+ "model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
361
+ "model.layers.19.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
362
+ "model.layers.19.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
363
+ "model.layers.19.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
364
+ "model.layers.19.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
365
+ "model.layers.19.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
366
+ "model.layers.19.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
367
+ "model.layers.19.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
368
+ "model.layers.19.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
369
+ "model.layers.19.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
370
+ "model.layers.19.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
371
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
372
+ "model.layers.19.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
373
+ "model.layers.19.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
374
+ "model.layers.19.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
375
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
376
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
377
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
378
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
379
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
380
+ "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
386
+ "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
387
+ "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
389
+ "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
393
+ "model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
394
+ "model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
395
+ "model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
397
+ "model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
398
+ "model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
401
+ "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.2.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
404
+ "model.layers.2.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
405
+ "model.layers.2.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
406
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
407
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
409
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
410
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
411
+ "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
412
+ "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
413
+ "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
414
+ "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
415
+ "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
416
+ "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
417
+ "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
418
+ "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
419
+ "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
420
+ "model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
421
+ "model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
422
+ "model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
423
+ "model.layers.20.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
424
+ "model.layers.20.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
425
+ "model.layers.20.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
426
+ "model.layers.20.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
427
+ "model.layers.20.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
428
+ "model.layers.20.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
429
+ "model.layers.20.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
430
+ "model.layers.20.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
431
+ "model.layers.20.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
432
+ "model.layers.20.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
433
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
434
+ "model.layers.20.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
435
+ "model.layers.20.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
436
+ "model.layers.20.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
437
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
438
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
439
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
440
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
441
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
442
+ "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
443
+ "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
444
+ "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
445
+ "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
446
+ "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
447
+ "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
448
+ "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
449
+ "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
450
+ "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
451
+ "model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
452
+ "model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
453
+ "model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
454
+ "model.layers.21.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
455
+ "model.layers.21.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
456
+ "model.layers.21.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
457
+ "model.layers.21.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
458
+ "model.layers.21.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
459
+ "model.layers.21.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
460
+ "model.layers.21.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
461
+ "model.layers.21.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
462
+ "model.layers.21.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
463
+ "model.layers.21.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
464
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
465
+ "model.layers.21.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
466
+ "model.layers.21.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
467
+ "model.layers.21.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
468
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
469
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
470
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
471
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
472
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
473
+ "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
474
+ "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
475
+ "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
476
+ "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
477
+ "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
478
+ "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
479
+ "model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
480
+ "model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
481
+ "model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
482
+ "model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
483
+ "model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
484
+ "model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
485
+ "model.layers.22.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
486
+ "model.layers.22.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
487
+ "model.layers.22.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
488
+ "model.layers.22.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
489
+ "model.layers.22.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
490
+ "model.layers.22.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
491
+ "model.layers.22.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
492
+ "model.layers.22.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
493
+ "model.layers.22.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
494
+ "model.layers.22.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
495
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
496
+ "model.layers.22.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
497
+ "model.layers.22.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
498
+ "model.layers.22.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
499
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
500
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
501
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
502
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
503
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
504
+ "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
505
+ "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
506
+ "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
507
+ "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
508
+ "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
509
+ "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
510
+ "model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
511
+ "model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
512
+ "model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
513
+ "model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
514
+ "model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
515
+ "model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
516
+ "model.layers.23.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
517
+ "model.layers.23.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
518
+ "model.layers.23.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
519
+ "model.layers.23.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
520
+ "model.layers.23.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
521
+ "model.layers.23.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
522
+ "model.layers.23.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
523
+ "model.layers.23.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
524
+ "model.layers.23.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
525
+ "model.layers.23.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
526
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
527
+ "model.layers.23.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
528
+ "model.layers.23.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
529
+ "model.layers.23.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
530
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
531
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
532
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
533
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
534
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
535
+ "model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
536
+ "model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
537
+ "model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
538
+ "model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
539
+ "model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
540
+ "model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
541
+ "model.layers.24.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
542
+ "model.layers.24.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
543
+ "model.layers.24.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
544
+ "model.layers.24.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
545
+ "model.layers.24.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
546
+ "model.layers.24.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
547
+ "model.layers.24.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
548
+ "model.layers.24.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
549
+ "model.layers.24.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
550
+ "model.layers.24.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
551
+ "model.layers.24.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
552
+ "model.layers.24.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
553
+ "model.layers.24.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
554
+ "model.layers.24.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
555
+ "model.layers.24.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
556
+ "model.layers.24.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
557
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
558
+ "model.layers.24.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
559
+ "model.layers.24.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
560
+ "model.layers.24.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
561
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
562
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
563
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
564
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
565
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
566
+ "model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
567
+ "model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
568
+ "model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
569
+ "model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
570
+ "model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
571
+ "model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
572
+ "model.layers.25.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
573
+ "model.layers.25.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
574
+ "model.layers.25.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
575
+ "model.layers.25.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
576
+ "model.layers.25.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
577
+ "model.layers.25.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
578
+ "model.layers.25.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
579
+ "model.layers.25.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
580
+ "model.layers.25.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
581
+ "model.layers.25.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
582
+ "model.layers.25.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
583
+ "model.layers.25.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
584
+ "model.layers.25.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
585
+ "model.layers.25.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
586
+ "model.layers.25.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
587
+ "model.layers.25.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
588
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
589
+ "model.layers.25.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
590
+ "model.layers.25.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
591
+ "model.layers.25.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
592
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
593
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
594
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
595
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
596
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
597
+ "model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
598
+ "model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
599
+ "model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
600
+ "model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
601
+ "model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
602
+ "model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
603
+ "model.layers.26.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
604
+ "model.layers.26.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
605
+ "model.layers.26.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
606
+ "model.layers.26.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
607
+ "model.layers.26.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
608
+ "model.layers.26.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
609
+ "model.layers.26.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
610
+ "model.layers.26.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
611
+ "model.layers.26.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
612
+ "model.layers.26.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
613
+ "model.layers.26.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
614
+ "model.layers.26.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
615
+ "model.layers.26.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
616
+ "model.layers.26.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
617
+ "model.layers.26.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
618
+ "model.layers.26.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
619
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
620
+ "model.layers.26.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
621
+ "model.layers.26.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
622
+ "model.layers.26.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
623
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
624
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
625
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
626
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
627
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
628
+ "model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
629
+ "model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
630
+ "model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
631
+ "model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
632
+ "model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
633
+ "model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
634
+ "model.layers.27.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
635
+ "model.layers.27.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
636
+ "model.layers.27.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
637
+ "model.layers.27.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
638
+ "model.layers.27.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
639
+ "model.layers.27.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
640
+ "model.layers.27.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
641
+ "model.layers.27.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
642
+ "model.layers.27.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
643
+ "model.layers.27.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
644
+ "model.layers.27.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
645
+ "model.layers.27.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
646
+ "model.layers.27.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
647
+ "model.layers.27.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
648
+ "model.layers.27.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
649
+ "model.layers.27.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
650
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
651
+ "model.layers.27.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
652
+ "model.layers.27.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
653
+ "model.layers.27.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
654
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
655
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
656
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
657
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
658
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
659
+ "model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
660
+ "model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
661
+ "model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
662
+ "model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
663
+ "model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
664
+ "model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
665
+ "model.layers.28.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
666
+ "model.layers.28.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
667
+ "model.layers.28.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
668
+ "model.layers.28.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
669
+ "model.layers.28.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
670
+ "model.layers.28.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
671
+ "model.layers.28.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
672
+ "model.layers.28.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
673
+ "model.layers.28.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
674
+ "model.layers.28.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
675
+ "model.layers.28.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
676
+ "model.layers.28.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
677
+ "model.layers.28.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
678
+ "model.layers.28.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
679
+ "model.layers.28.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
680
+ "model.layers.28.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
681
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
682
+ "model.layers.28.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
683
+ "model.layers.28.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
684
+ "model.layers.28.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
685
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
686
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
687
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
688
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
689
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
690
+ "model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
691
+ "model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
692
+ "model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
693
+ "model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
694
+ "model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
695
+ "model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
696
+ "model.layers.29.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
697
+ "model.layers.29.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
698
+ "model.layers.29.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
699
+ "model.layers.29.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
700
+ "model.layers.29.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
701
+ "model.layers.29.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
702
+ "model.layers.29.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
703
+ "model.layers.29.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
704
+ "model.layers.29.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
705
+ "model.layers.29.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
706
+ "model.layers.29.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
707
+ "model.layers.29.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
708
+ "model.layers.29.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
709
+ "model.layers.29.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
710
+ "model.layers.29.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
711
+ "model.layers.29.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
712
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
713
+ "model.layers.29.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
714
+ "model.layers.29.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
715
+ "model.layers.29.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
716
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
717
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
718
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
719
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
720
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
721
+ "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
722
+ "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
723
+ "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
724
+ "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
725
+ "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
726
+ "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
727
+ "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
728
+ "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
729
+ "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
730
+ "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
731
+ "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
732
+ "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
733
+ "model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
734
+ "model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
735
+ "model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
736
+ "model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
737
+ "model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
738
+ "model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
739
+ "model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
740
+ "model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
741
+ "model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
742
+ "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
743
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
744
+ "model.layers.3.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
745
+ "model.layers.3.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
746
+ "model.layers.3.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
747
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
748
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
749
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
750
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
751
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
752
+ "model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
753
+ "model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
754
+ "model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
755
+ "model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
756
+ "model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
757
+ "model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
758
+ "model.layers.30.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
759
+ "model.layers.30.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
760
+ "model.layers.30.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
761
+ "model.layers.30.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
762
+ "model.layers.30.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
763
+ "model.layers.30.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
764
+ "model.layers.30.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
765
+ "model.layers.30.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
766
+ "model.layers.30.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
767
+ "model.layers.30.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
768
+ "model.layers.30.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
769
+ "model.layers.30.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
770
+ "model.layers.30.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
771
+ "model.layers.30.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
772
+ "model.layers.30.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00004.safetensors",
773
+ "model.layers.30.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
774
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
775
+ "model.layers.30.mlp_residual.w1.weight": "model-00003-of-00004.safetensors",
776
+ "model.layers.30.mlp_residual.w2.weight": "model-00003-of-00004.safetensors",
777
+ "model.layers.30.mlp_residual.w3.weight": "model-00003-of-00004.safetensors",
778
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
779
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
780
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
781
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
782
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
783
+ "model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors",
784
+ "model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors",
785
+ "model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00004.safetensors",
786
+ "model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors",
787
+ "model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors",
788
+ "model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00004.safetensors",
789
+ "model.layers.31.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors",
790
+ "model.layers.31.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors",
791
+ "model.layers.31.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00004.safetensors",
792
+ "model.layers.31.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors",
793
+ "model.layers.31.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors",
794
+ "model.layers.31.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00004.safetensors",
795
+ "model.layers.31.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00004.safetensors",
796
+ "model.layers.31.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00004.safetensors",
797
+ "model.layers.31.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00004.safetensors",
798
+ "model.layers.31.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00004.safetensors",
799
+ "model.layers.31.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00004.safetensors",
800
+ "model.layers.31.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00004.safetensors",
801
+ "model.layers.31.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00004.safetensors",
802
+ "model.layers.31.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00004.safetensors",
803
+ "model.layers.31.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00004.safetensors",
804
+ "model.layers.31.block_sparse_moe.gate.weight": "model-00003-of-00004.safetensors",
805
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
806
+ "model.layers.31.mlp_residual.w1.weight": "model-00004-of-00004.safetensors",
807
+ "model.layers.31.mlp_residual.w2.weight": "model-00004-of-00004.safetensors",
808
+ "model.layers.31.mlp_residual.w3.weight": "model-00004-of-00004.safetensors",
809
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
810
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
811
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
812
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
813
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
814
+ "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
815
+ "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
816
+ "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
817
+ "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
818
+ "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
819
+ "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
820
+ "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
821
+ "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
822
+ "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
823
+ "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
824
+ "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
825
+ "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
826
+ "model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
827
+ "model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
828
+ "model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
829
+ "model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
830
+ "model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
831
+ "model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
832
+ "model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
833
+ "model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
834
+ "model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
835
+ "model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
836
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
837
+ "model.layers.4.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
838
+ "model.layers.4.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
839
+ "model.layers.4.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
840
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
841
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
842
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
843
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
844
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
845
+ "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
846
+ "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
847
+ "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
848
+ "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
849
+ "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
850
+ "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
851
+ "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
852
+ "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
853
+ "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
854
+ "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
855
+ "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
856
+ "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
857
+ "model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
858
+ "model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
859
+ "model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
860
+ "model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
861
+ "model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
862
+ "model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
863
+ "model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
864
+ "model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
865
+ "model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
866
+ "model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
867
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
868
+ "model.layers.5.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
869
+ "model.layers.5.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
870
+ "model.layers.5.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
871
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
872
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
873
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
874
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
875
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
876
+ "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
877
+ "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
878
+ "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
879
+ "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
880
+ "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
881
+ "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
882
+ "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
883
+ "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
884
+ "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
885
+ "model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
886
+ "model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
887
+ "model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
888
+ "model.layers.6.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
889
+ "model.layers.6.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
890
+ "model.layers.6.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
891
+ "model.layers.6.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
892
+ "model.layers.6.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
893
+ "model.layers.6.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
894
+ "model.layers.6.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
895
+ "model.layers.6.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
896
+ "model.layers.6.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
897
+ "model.layers.6.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
898
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
899
+ "model.layers.6.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
900
+ "model.layers.6.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
901
+ "model.layers.6.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
902
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
903
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
904
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
905
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
906
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
907
+ "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
908
+ "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
909
+ "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
910
+ "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
911
+ "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
912
+ "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
913
+ "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
914
+ "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
915
+ "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
916
+ "model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
917
+ "model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
918
+ "model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
919
+ "model.layers.7.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
920
+ "model.layers.7.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
921
+ "model.layers.7.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
922
+ "model.layers.7.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
923
+ "model.layers.7.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
924
+ "model.layers.7.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
925
+ "model.layers.7.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
926
+ "model.layers.7.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
927
+ "model.layers.7.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
928
+ "model.layers.7.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
929
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
930
+ "model.layers.7.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
931
+ "model.layers.7.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
932
+ "model.layers.7.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
933
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
934
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
935
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
936
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
937
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
938
+ "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00004.safetensors",
939
+ "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00004.safetensors",
940
+ "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors",
941
+ "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00004.safetensors",
942
+ "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00004.safetensors",
943
+ "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors",
944
+ "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00004.safetensors",
945
+ "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00004.safetensors",
946
+ "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors",
947
+ "model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00004.safetensors",
948
+ "model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00004.safetensors",
949
+ "model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors",
950
+ "model.layers.8.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00004.safetensors",
951
+ "model.layers.8.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00004.safetensors",
952
+ "model.layers.8.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00004.safetensors",
953
+ "model.layers.8.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00004.safetensors",
954
+ "model.layers.8.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00004.safetensors",
955
+ "model.layers.8.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00004.safetensors",
956
+ "model.layers.8.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00004.safetensors",
957
+ "model.layers.8.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00004.safetensors",
958
+ "model.layers.8.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00004.safetensors",
959
+ "model.layers.8.block_sparse_moe.gate.weight": "model-00001-of-00004.safetensors",
960
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
961
+ "model.layers.8.mlp_residual.w1.weight": "model-00001-of-00004.safetensors",
962
+ "model.layers.8.mlp_residual.w2.weight": "model-00001-of-00004.safetensors",
963
+ "model.layers.8.mlp_residual.w3.weight": "model-00001-of-00004.safetensors",
964
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
965
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
966
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
967
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
968
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
969
+ "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00004.safetensors",
970
+ "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors",
971
+ "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors",
972
+ "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00004.safetensors",
973
+ "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors",
974
+ "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors",
975
+ "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00004.safetensors",
976
+ "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors",
977
+ "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors",
978
+ "model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00004.safetensors",
979
+ "model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors",
980
+ "model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors",
981
+ "model.layers.9.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00004.safetensors",
982
+ "model.layers.9.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00004.safetensors",
983
+ "model.layers.9.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00004.safetensors",
984
+ "model.layers.9.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00004.safetensors",
985
+ "model.layers.9.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00004.safetensors",
986
+ "model.layers.9.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00004.safetensors",
987
+ "model.layers.9.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00004.safetensors",
988
+ "model.layers.9.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00004.safetensors",
989
+ "model.layers.9.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00004.safetensors",
990
+ "model.layers.9.block_sparse_moe.gate.weight": "model-00002-of-00004.safetensors",
991
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
992
+ "model.layers.9.mlp_residual.w1.weight": "model-00002-of-00004.safetensors",
993
+ "model.layers.9.mlp_residual.w2.weight": "model-00002-of-00004.safetensors",
994
+ "model.layers.9.mlp_residual.w3.weight": "model-00002-of-00004.safetensors",
995
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
996
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
997
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
998
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
999
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
1000
+ "model.norm.weight": "model-00004-of-00004.safetensors"
1001
+ }
1002
+ }
modeling_mixtral.py ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|eot_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 4096,
2061
+ "pad_token": "<|eot_id|>",
2062
+ "padding_side": "right",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }
trainer_state.json ADDED
@@ -0,0 +1,1573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.2703818369453046,
5
+ "eval_steps": 500,
6
+ "global_step": 2200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.010319917440660475,
13
+ "grad_norm": 2.1213459968566895,
14
+ "learning_rate": 2.2727272727272728e-06,
15
+ "loss": 0.8274,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.02063983488132095,
20
+ "grad_norm": 1.1507428884506226,
21
+ "learning_rate": 4.5454545454545455e-06,
22
+ "loss": 0.7784,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.030959752321981424,
27
+ "grad_norm": 0.6039409637451172,
28
+ "learning_rate": 6.818181818181818e-06,
29
+ "loss": 0.7275,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.0412796697626419,
34
+ "grad_norm": 0.5366007089614868,
35
+ "learning_rate": 9.090909090909091e-06,
36
+ "loss": 0.7066,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.05159958720330237,
41
+ "grad_norm": 0.5229462385177612,
42
+ "learning_rate": 1.1363636363636366e-05,
43
+ "loss": 0.6901,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.06191950464396285,
48
+ "grad_norm": 0.5291970372200012,
49
+ "learning_rate": 1.3636363636363637e-05,
50
+ "loss": 0.6741,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.07223942208462332,
55
+ "grad_norm": 0.5639849901199341,
56
+ "learning_rate": 1.590909090909091e-05,
57
+ "loss": 0.6625,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.0825593395252838,
62
+ "grad_norm": 0.5302533507347107,
63
+ "learning_rate": 1.8181818181818182e-05,
64
+ "loss": 0.6513,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.09287925696594428,
69
+ "grad_norm": 0.7249609231948853,
70
+ "learning_rate": 1.9999975160696756e-05,
71
+ "loss": 0.653,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.10319917440660474,
76
+ "grad_norm": 0.5580225586891174,
77
+ "learning_rate": 1.999910579803988e-05,
78
+ "loss": 0.6456,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.11351909184726522,
83
+ "grad_norm": 0.5612972974777222,
84
+ "learning_rate": 1.9996994593616145e-05,
85
+ "loss": 0.6364,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1238390092879257,
90
+ "grad_norm": 0.5823021531105042,
91
+ "learning_rate": 1.9993641809627166e-05,
92
+ "loss": 0.6302,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.13415892672858618,
97
+ "grad_norm": 0.5421112775802612,
98
+ "learning_rate": 1.9989047862472904e-05,
99
+ "loss": 0.6277,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.14447884416924664,
104
+ "grad_norm": 0.622350811958313,
105
+ "learning_rate": 1.9983213322699926e-05,
106
+ "loss": 0.625,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.15479876160990713,
111
+ "grad_norm": 0.6643008589744568,
112
+ "learning_rate": 1.997613891493054e-05,
113
+ "loss": 0.6229,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.1651186790505676,
118
+ "grad_norm": 0.6329976320266724,
119
+ "learning_rate": 1.996782551777282e-05,
120
+ "loss": 0.6099,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.17543859649122806,
125
+ "grad_norm": 0.5071990489959717,
126
+ "learning_rate": 1.995827416371147e-05,
127
+ "loss": 0.6035,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.18575851393188855,
132
+ "grad_norm": 0.5435068011283875,
133
+ "learning_rate": 1.9947486038979606e-05,
134
+ "loss": 0.601,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.19607843137254902,
139
+ "grad_norm": 0.5333253145217896,
140
+ "learning_rate": 1.993546248341142e-05,
141
+ "loss": 0.5995,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.20639834881320948,
146
+ "grad_norm": 0.5422487258911133,
147
+ "learning_rate": 1.9922204990275788e-05,
148
+ "loss": 0.5924,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.21671826625386997,
153
+ "grad_norm": 0.5293141007423401,
154
+ "learning_rate": 1.9907715206090817e-05,
155
+ "loss": 0.5962,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.22703818369453044,
160
+ "grad_norm": 0.6123012900352478,
161
+ "learning_rate": 1.989199493041935e-05,
162
+ "loss": 0.585,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.23735810113519093,
167
+ "grad_norm": 0.5224360823631287,
168
+ "learning_rate": 1.9875046115645443e-05,
169
+ "loss": 0.5859,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2476780185758514,
174
+ "grad_norm": 0.6205320358276367,
175
+ "learning_rate": 1.9856870866731946e-05,
176
+ "loss": 0.5856,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.2579979360165119,
181
+ "grad_norm": 0.6249591708183289,
182
+ "learning_rate": 1.983747144095902e-05,
183
+ "loss": 0.581,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.26831785345717235,
188
+ "grad_norm": 0.5411680340766907,
189
+ "learning_rate": 1.9816850247643834e-05,
190
+ "loss": 0.5738,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.2786377708978328,
195
+ "grad_norm": 0.5577812790870667,
196
+ "learning_rate": 1.97950098478413e-05,
197
+ "loss": 0.5717,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.2889576883384933,
202
+ "grad_norm": 0.5821300148963928,
203
+ "learning_rate": 1.9771952954026038e-05,
204
+ "loss": 0.5714,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.29927760577915374,
209
+ "grad_norm": 0.5330939292907715,
210
+ "learning_rate": 1.9747682429755493e-05,
211
+ "loss": 0.5685,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.30959752321981426,
216
+ "grad_norm": 0.5918645262718201,
217
+ "learning_rate": 1.972220128931427e-05,
218
+ "loss": 0.571,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.31991744066047473,
223
+ "grad_norm": 0.5980034470558167,
224
+ "learning_rate": 1.9695512697339797e-05,
225
+ "loss": 0.5657,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3302373581011352,
230
+ "grad_norm": 0.5418304800987244,
231
+ "learning_rate": 1.966761996842929e-05,
232
+ "loss": 0.566,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.34055727554179566,
237
+ "grad_norm": 0.5538172125816345,
238
+ "learning_rate": 1.9638526566728088e-05,
239
+ "loss": 0.5551,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.3508771929824561,
244
+ "grad_norm": 0.504206120967865,
245
+ "learning_rate": 1.960823610549943e-05,
246
+ "loss": 0.5557,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.36119711042311664,
251
+ "grad_norm": 0.51911461353302,
252
+ "learning_rate": 1.9576752346675692e-05,
253
+ "loss": 0.5561,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.3715170278637771,
258
+ "grad_norm": 0.5813859701156616,
259
+ "learning_rate": 1.954407920039119e-05,
260
+ "loss": 0.5606,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.38183694530443757,
265
+ "grad_norm": 0.609829843044281,
266
+ "learning_rate": 1.951022072449655e-05,
267
+ "loss": 0.5515,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.39215686274509803,
272
+ "grad_norm": 0.5120096802711487,
273
+ "learning_rate": 1.9475181124054742e-05,
274
+ "loss": 0.5529,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.4024767801857585,
279
+ "grad_norm": 0.5144566297531128,
280
+ "learning_rate": 1.9438964750818833e-05,
281
+ "loss": 0.5457,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.41279669762641896,
286
+ "grad_norm": 0.5255650877952576,
287
+ "learning_rate": 1.940157610269152e-05,
288
+ "loss": 0.5447,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.4231166150670795,
293
+ "grad_norm": 0.5155138969421387,
294
+ "learning_rate": 1.9363019823166506e-05,
295
+ "loss": 0.548,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.43343653250773995,
300
+ "grad_norm": 0.5140640735626221,
301
+ "learning_rate": 1.9323300700751816e-05,
302
+ "loss": 0.5456,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.4437564499484004,
307
+ "grad_norm": 0.4923473596572876,
308
+ "learning_rate": 1.9282423668375064e-05,
309
+ "loss": 0.5429,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.4540763673890609,
314
+ "grad_norm": 0.5069249272346497,
315
+ "learning_rate": 1.9240393802770824e-05,
316
+ "loss": 0.5441,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.46439628482972134,
321
+ "grad_norm": 0.47837620973587036,
322
+ "learning_rate": 1.9197216323850122e-05,
323
+ "loss": 0.5396,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.47471620227038186,
328
+ "grad_norm": 0.5408268570899963,
329
+ "learning_rate": 1.9152896594052134e-05,
330
+ "loss": 0.5332,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4850361197110423,
335
+ "grad_norm": 0.5018060803413391,
336
+ "learning_rate": 1.910744011767821e-05,
337
+ "loss": 0.5314,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4953560371517028,
342
+ "grad_norm": 0.47133609652519226,
343
+ "learning_rate": 1.9060852540208277e-05,
344
+ "loss": 0.5352,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.5056759545923633,
349
+ "grad_norm": 0.496358186006546,
350
+ "learning_rate": 1.9013139647599656e-05,
351
+ "loss": 0.5344,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.5159958720330238,
356
+ "grad_norm": 0.527833104133606,
357
+ "learning_rate": 1.8964307365568513e-05,
358
+ "loss": 0.5246,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.5263157894736842,
363
+ "grad_norm": 0.4785318374633789,
364
+ "learning_rate": 1.89143617588539e-05,
365
+ "loss": 0.5257,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.5366357069143447,
370
+ "grad_norm": 0.4716449975967407,
371
+ "learning_rate": 1.886330903046454e-05,
372
+ "loss": 0.5294,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.5469556243550051,
377
+ "grad_norm": 0.489279180765152,
378
+ "learning_rate": 1.8811155520908445e-05,
379
+ "loss": 0.5278,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.5572755417956656,
384
+ "grad_norm": 0.5271186232566833,
385
+ "learning_rate": 1.8757907707405456e-05,
386
+ "loss": 0.5196,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.5675954592363261,
391
+ "grad_norm": 0.47395509481430054,
392
+ "learning_rate": 1.8703572203082795e-05,
393
+ "loss": 0.5233,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.5779153766769866,
398
+ "grad_norm": 0.4861067235469818,
399
+ "learning_rate": 1.8648155756153768e-05,
400
+ "loss": 0.5191,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.5882352941176471,
405
+ "grad_norm": 0.5004777908325195,
406
+ "learning_rate": 1.859166524907963e-05,
407
+ "loss": 0.5214,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5985552115583075,
412
+ "grad_norm": 0.5303364992141724,
413
+ "learning_rate": 1.8534107697714864e-05,
414
+ "loss": 0.5269,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.608875128998968,
419
+ "grad_norm": 0.4722409248352051,
420
+ "learning_rate": 1.84754902504358e-05,
421
+ "loss": 0.5315,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.6191950464396285,
426
+ "grad_norm": 0.4983135163784027,
427
+ "learning_rate": 1.8415820187252847e-05,
428
+ "loss": 0.5245,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.6295149638802889,
433
+ "grad_norm": 0.4688129723072052,
434
+ "learning_rate": 1.8355104918906353e-05,
435
+ "loss": 0.5223,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.6398348813209495,
440
+ "grad_norm": 0.512848973274231,
441
+ "learning_rate": 1.8293351985946194e-05,
442
+ "loss": 0.5142,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.6501547987616099,
447
+ "grad_norm": 0.47755149006843567,
448
+ "learning_rate": 1.823056905779532e-05,
449
+ "loss": 0.5215,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.6604747162022704,
454
+ "grad_norm": 0.4616507887840271,
455
+ "learning_rate": 1.816676393179721e-05,
456
+ "loss": 0.5157,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.6707946336429309,
461
+ "grad_norm": 0.48507964611053467,
462
+ "learning_rate": 1.8101944532247495e-05,
463
+ "loss": 0.5202,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.6811145510835913,
468
+ "grad_norm": 0.4519255459308624,
469
+ "learning_rate": 1.80361189094098e-05,
470
+ "loss": 0.513,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.6914344685242518,
475
+ "grad_norm": 0.48692259192466736,
476
+ "learning_rate": 1.796929523851593e-05,
477
+ "loss": 0.5157,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.7017543859649122,
482
+ "grad_norm": 0.4593399465084076,
483
+ "learning_rate": 1.790148181875055e-05,
484
+ "loss": 0.5164,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.7120743034055728,
489
+ "grad_norm": 0.4479089379310608,
490
+ "learning_rate": 1.783268707222048e-05,
491
+ "loss": 0.5142,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.7223942208462333,
496
+ "grad_norm": 0.4871484041213989,
497
+ "learning_rate": 1.776291954290867e-05,
498
+ "loss": 0.5118,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.7327141382868937,
503
+ "grad_norm": 0.48732689023017883,
504
+ "learning_rate": 1.769218789561312e-05,
505
+ "loss": 0.5078,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.7430340557275542,
510
+ "grad_norm": 0.4574413597583771,
511
+ "learning_rate": 1.7620500914870734e-05,
512
+ "loss": 0.5179,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.7533539731682146,
517
+ "grad_norm": 0.4452187120914459,
518
+ "learning_rate": 1.7547867503866315e-05,
519
+ "loss": 0.5086,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.7636738906088751,
524
+ "grad_norm": 0.47763118147850037,
525
+ "learning_rate": 1.7474296683326844e-05,
526
+ "loss": 0.5158,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.7739938080495357,
531
+ "grad_norm": 0.4462694227695465,
532
+ "learning_rate": 1.739979759040114e-05,
533
+ "loss": 0.5072,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.7843137254901961,
538
+ "grad_norm": 0.44416990876197815,
539
+ "learning_rate": 1.7324379477525086e-05,
540
+ "loss": 0.5104,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.7946336429308566,
545
+ "grad_norm": 0.4583296775817871,
546
+ "learning_rate": 1.724805171127249e-05,
547
+ "loss": 0.509,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.804953560371517,
552
+ "grad_norm": 0.46201425790786743,
553
+ "learning_rate": 1.7170823771191824e-05,
554
+ "loss": 0.5049,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.8152734778121775,
559
+ "grad_norm": 0.46992990374565125,
560
+ "learning_rate": 1.709270524862891e-05,
561
+ "loss": 0.5035,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.8255933952528379,
566
+ "grad_norm": 0.4597872793674469,
567
+ "learning_rate": 1.7013705845535704e-05,
568
+ "loss": 0.509,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.8359133126934984,
573
+ "grad_norm": 0.44823798537254333,
574
+ "learning_rate": 1.6933835373265373e-05,
575
+ "loss": 0.5096,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.846233230134159,
580
+ "grad_norm": 0.46216702461242676,
581
+ "learning_rate": 1.685310375135376e-05,
582
+ "loss": 0.5094,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.8565531475748194,
587
+ "grad_norm": 0.4581802189350128,
588
+ "learning_rate": 1.6771521006287442e-05,
589
+ "loss": 0.4999,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.8668730650154799,
594
+ "grad_norm": 0.45786017179489136,
595
+ "learning_rate": 1.6689097270258463e-05,
596
+ "loss": 0.5087,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.8771929824561403,
601
+ "grad_norm": 0.45421096682548523,
602
+ "learning_rate": 1.6605842779905984e-05,
603
+ "loss": 0.5011,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.8875128998968008,
608
+ "grad_norm": 0.44464901089668274,
609
+ "learning_rate": 1.6521767875044935e-05,
610
+ "loss": 0.4953,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.8978328173374613,
615
+ "grad_norm": 0.44755035638809204,
616
+ "learning_rate": 1.643688299738186e-05,
617
+ "loss": 0.4971,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.9081527347781218,
622
+ "grad_norm": 0.445285826921463,
623
+ "learning_rate": 1.635119868921809e-05,
624
+ "loss": 0.5051,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.9184726522187823,
629
+ "grad_norm": 0.429434210062027,
630
+ "learning_rate": 1.6264725592140468e-05,
631
+ "loss": 0.5007,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.9287925696594427,
636
+ "grad_norm": 0.46974435448646545,
637
+ "learning_rate": 1.6177474445699695e-05,
638
+ "loss": 0.4933,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.9391124871001032,
643
+ "grad_norm": 0.44739529490470886,
644
+ "learning_rate": 1.6089456086076527e-05,
645
+ "loss": 0.4962,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.9494324045407637,
650
+ "grad_norm": 0.42498907446861267,
651
+ "learning_rate": 1.6000681444735976e-05,
652
+ "loss": 0.499,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.9597523219814241,
657
+ "grad_norm": 0.4373469650745392,
658
+ "learning_rate": 1.5911161547069688e-05,
659
+ "loss": 0.4963,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.9700722394220846,
664
+ "grad_norm": 0.4303041100502014,
665
+ "learning_rate": 1.582090751102662e-05,
666
+ "loss": 0.5054,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.9803921568627451,
671
+ "grad_norm": 0.4305797815322876,
672
+ "learning_rate": 1.5729930545732247e-05,
673
+ "loss": 0.4903,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.9907120743034056,
678
+ "grad_norm": 0.4737144112586975,
679
+ "learning_rate": 1.5638241950096458e-05,
680
+ "loss": 0.4951,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 1.001031991744066,
685
+ "grad_norm": 0.8125914931297302,
686
+ "learning_rate": 1.554585311141027e-05,
687
+ "loss": 0.4869,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 1.0113519091847265,
692
+ "grad_norm": 0.5099620223045349,
693
+ "learning_rate": 1.5452775503931566e-05,
694
+ "loss": 0.4289,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 1.021671826625387,
699
+ "grad_norm": 0.478298544883728,
700
+ "learning_rate": 1.5359020687460096e-05,
701
+ "loss": 0.4274,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 1.0319917440660475,
706
+ "grad_norm": 0.46251142024993896,
707
+ "learning_rate": 1.5264600305901744e-05,
708
+ "loss": 0.4315,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 1.0423116615067078,
713
+ "grad_norm": 0.45655471086502075,
714
+ "learning_rate": 1.5169526085822451e-05,
715
+ "loss": 0.4245,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 1.0526315789473684,
720
+ "grad_norm": 0.43170642852783203,
721
+ "learning_rate": 1.5073809834991816e-05,
722
+ "loss": 0.4233,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 1.0629514963880289,
727
+ "grad_norm": 0.4710790812969208,
728
+ "learning_rate": 1.4977463440916621e-05,
729
+ "loss": 0.4218,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 1.0732714138286894,
734
+ "grad_norm": 0.5029376149177551,
735
+ "learning_rate": 1.4880498869364482e-05,
736
+ "loss": 0.4276,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 1.08359133126935,
741
+ "grad_norm": 0.42352095246315,
742
+ "learning_rate": 1.4782928162877722e-05,
743
+ "loss": 0.425,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 1.0939112487100102,
748
+ "grad_norm": 0.4630359411239624,
749
+ "learning_rate": 1.468476343927778e-05,
750
+ "loss": 0.4243,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 1.1042311661506707,
755
+ "grad_norm": 0.46747565269470215,
756
+ "learning_rate": 1.4586016890160208e-05,
757
+ "loss": 0.4289,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 1.1145510835913313,
762
+ "grad_norm": 0.4462341070175171,
763
+ "learning_rate": 1.4486700779380547e-05,
764
+ "loss": 0.4265,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 1.1248710010319918,
769
+ "grad_norm": 0.468124121427536,
770
+ "learning_rate": 1.4386827441531202e-05,
771
+ "loss": 0.4251,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 1.1351909184726523,
776
+ "grad_norm": 0.46226370334625244,
777
+ "learning_rate": 1.4286409280409558e-05,
778
+ "loss": 0.424,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 1.1455108359133126,
783
+ "grad_norm": 0.45096278190612793,
784
+ "learning_rate": 1.4185458767477487e-05,
785
+ "loss": 0.4249,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 1.1558307533539731,
790
+ "grad_norm": 0.4443894624710083,
791
+ "learning_rate": 1.4083988440312429e-05,
792
+ "loss": 0.4254,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 1.1661506707946336,
797
+ "grad_norm": 0.47349488735198975,
798
+ "learning_rate": 1.3982010901050305e-05,
799
+ "loss": 0.4308,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 1.1764705882352942,
804
+ "grad_norm": 0.4347674250602722,
805
+ "learning_rate": 1.3879538814820395e-05,
806
+ "loss": 0.4205,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 1.1867905056759547,
811
+ "grad_norm": 0.46304601430892944,
812
+ "learning_rate": 1.3776584908172364e-05,
813
+ "loss": 0.4268,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 1.197110423116615,
818
+ "grad_norm": 0.46236124634742737,
819
+ "learning_rate": 1.3673161967495708e-05,
820
+ "loss": 0.4244,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 1.2074303405572755,
825
+ "grad_norm": 0.4554111957550049,
826
+ "learning_rate": 1.3569282837431737e-05,
827
+ "loss": 0.4267,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 1.217750257997936,
832
+ "grad_norm": 0.44835782051086426,
833
+ "learning_rate": 1.3464960419278332e-05,
834
+ "loss": 0.4213,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 1.2280701754385965,
839
+ "grad_norm": 0.43975839018821716,
840
+ "learning_rate": 1.336020766938766e-05,
841
+ "loss": 0.4172,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 1.238390092879257,
846
+ "grad_norm": 0.4433438181877136,
847
+ "learning_rate": 1.3255037597557057e-05,
848
+ "loss": 0.4242,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 1.2487100103199174,
853
+ "grad_norm": 0.44105082750320435,
854
+ "learning_rate": 1.3149463265413282e-05,
855
+ "loss": 0.4238,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 1.2590299277605779,
860
+ "grad_norm": 0.4388076961040497,
861
+ "learning_rate": 1.3043497784790315e-05,
862
+ "loss": 0.4232,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 1.2693498452012384,
867
+ "grad_norm": 0.46081188321113586,
868
+ "learning_rate": 1.2937154316100927e-05,
869
+ "loss": 0.4231,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 1.279669762641899,
874
+ "grad_norm": 0.4441220164299011,
875
+ "learning_rate": 1.283044606670223e-05,
876
+ "loss": 0.4156,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 1.2899896800825594,
881
+ "grad_norm": 0.4531669020652771,
882
+ "learning_rate": 1.2723386289255374e-05,
883
+ "loss": 0.4232,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 1.3003095975232197,
888
+ "grad_norm": 0.4175763428211212,
889
+ "learning_rate": 1.2615988280079645e-05,
890
+ "loss": 0.4187,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 1.3106295149638802,
895
+ "grad_norm": 0.4199049770832062,
896
+ "learning_rate": 1.2508265377501102e-05,
897
+ "loss": 0.4203,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 1.3209494324045408,
902
+ "grad_norm": 0.4577757716178894,
903
+ "learning_rate": 1.240023096019603e-05,
904
+ "loss": 0.4221,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.3312693498452013,
909
+ "grad_norm": 0.4792121946811676,
910
+ "learning_rate": 1.2291898445529384e-05,
911
+ "loss": 0.4194,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 1.3415892672858618,
916
+ "grad_norm": 0.4585110545158386,
917
+ "learning_rate": 1.2183281287888398e-05,
918
+ "loss": 0.419,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 1.351909184726522,
923
+ "grad_norm": 0.4325573146343231,
924
+ "learning_rate": 1.2074392977011629e-05,
925
+ "loss": 0.4195,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 1.3622291021671826,
930
+ "grad_norm": 0.4285847544670105,
931
+ "learning_rate": 1.1965247036313573e-05,
932
+ "loss": 0.4243,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 1.3725490196078431,
937
+ "grad_norm": 0.4623337686061859,
938
+ "learning_rate": 1.185585702120515e-05,
939
+ "loss": 0.4145,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 1.3828689370485037,
944
+ "grad_norm": 0.4030391275882721,
945
+ "learning_rate": 1.1746236517410155e-05,
946
+ "loss": 0.416,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 1.3931888544891642,
951
+ "grad_norm": 0.4173198938369751,
952
+ "learning_rate": 1.1636399139277998e-05,
953
+ "loss": 0.4156,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 1.4035087719298245,
958
+ "grad_norm": 0.43669000267982483,
959
+ "learning_rate": 1.1526358528092861e-05,
960
+ "loss": 0.4159,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 1.413828689370485,
965
+ "grad_norm": 0.4414576590061188,
966
+ "learning_rate": 1.1416128350379503e-05,
967
+ "loss": 0.4202,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 1.4241486068111455,
972
+ "grad_norm": 0.43647974729537964,
973
+ "learning_rate": 1.1305722296205968e-05,
974
+ "loss": 0.4166,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 1.434468524251806,
979
+ "grad_norm": 0.4320119619369507,
980
+ "learning_rate": 1.1195154077483313e-05,
981
+ "loss": 0.4178,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 1.4447884416924666,
986
+ "grad_norm": 0.43462061882019043,
987
+ "learning_rate": 1.1084437426262666e-05,
988
+ "loss": 0.4179,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 1.4551083591331269,
993
+ "grad_norm": 0.4457741677761078,
994
+ "learning_rate": 1.097358609302978e-05,
995
+ "loss": 0.4213,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 1.4654282765737874,
1000
+ "grad_norm": 0.42949527502059937,
1001
+ "learning_rate": 1.0862613844997272e-05,
1002
+ "loss": 0.4157,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 1.475748194014448,
1007
+ "grad_norm": 0.4295817017555237,
1008
+ "learning_rate": 1.0751534464394809e-05,
1009
+ "loss": 0.4118,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 1.4860681114551084,
1014
+ "grad_norm": 0.46553367376327515,
1015
+ "learning_rate": 1.0640361746757413e-05,
1016
+ "loss": 0.4133,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 1.496388028895769,
1021
+ "grad_norm": 0.4500296115875244,
1022
+ "learning_rate": 1.0529109499212137e-05,
1023
+ "loss": 0.4189,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 1.5067079463364292,
1028
+ "grad_norm": 0.44270554184913635,
1029
+ "learning_rate": 1.0417791538763269e-05,
1030
+ "loss": 0.4157,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 1.5170278637770898,
1035
+ "grad_norm": 0.42945072054862976,
1036
+ "learning_rate": 1.0306421690576318e-05,
1037
+ "loss": 0.4171,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 1.5273477812177503,
1042
+ "grad_norm": 0.4453894793987274,
1043
+ "learning_rate": 1.0195013786261017e-05,
1044
+ "loss": 0.4154,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 1.5376676986584106,
1049
+ "grad_norm": 0.4381779730319977,
1050
+ "learning_rate": 1.0083581662153488e-05,
1051
+ "loss": 0.4127,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 1.5479876160990713,
1056
+ "grad_norm": 0.42887642979621887,
1057
+ "learning_rate": 9.972139157597836e-06,
1058
+ "loss": 0.4205,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 1.5583075335397316,
1063
+ "grad_norm": 0.43492448329925537,
1064
+ "learning_rate": 9.86070011322737e-06,
1065
+ "loss": 0.4165,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 1.5686274509803921,
1070
+ "grad_norm": 0.4179580509662628,
1071
+ "learning_rate": 9.749278369245658e-06,
1072
+ "loss": 0.4148,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 1.5789473684210527,
1077
+ "grad_norm": 0.4366095960140228,
1078
+ "learning_rate": 9.637887763707649e-06,
1079
+ "loss": 0.4122,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 1.589267285861713,
1084
+ "grad_norm": 0.4154805541038513,
1085
+ "learning_rate": 9.52654213080103e-06,
1086
+ "loss": 0.4158,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 1.5995872033023737,
1091
+ "grad_norm": 0.4285624325275421,
1092
+ "learning_rate": 9.415255299128115e-06,
1093
+ "loss": 0.4092,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 1.609907120743034,
1098
+ "grad_norm": 1.8667707443237305,
1099
+ "learning_rate": 9.304041089988367e-06,
1100
+ "loss": 0.4185,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 1.6202270381836945,
1105
+ "grad_norm": 0.4168296456336975,
1106
+ "learning_rate": 9.192913315661887e-06,
1107
+ "loss": 0.4192,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 1.630546955624355,
1112
+ "grad_norm": 0.4320428967475891,
1113
+ "learning_rate": 9.081885777693969e-06,
1114
+ "loss": 0.4107,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 1.6408668730650153,
1119
+ "grad_norm": 0.4265373647212982,
1120
+ "learning_rate": 8.97097226518103e-06,
1121
+ "loss": 0.4118,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 1.651186790505676,
1126
+ "grad_norm": 0.4222305417060852,
1127
+ "learning_rate": 8.860186553058066e-06,
1128
+ "loss": 0.409,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 1.6615067079463364,
1133
+ "grad_norm": 0.4396103024482727,
1134
+ "learning_rate": 8.749542400387861e-06,
1135
+ "loss": 0.409,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 1.671826625386997,
1140
+ "grad_norm": 0.4199695885181427,
1141
+ "learning_rate": 8.639053548652183e-06,
1142
+ "loss": 0.4048,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 1.6821465428276574,
1147
+ "grad_norm": 0.5912848114967346,
1148
+ "learning_rate": 8.528733720045162e-06,
1149
+ "loss": 0.4144,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 1.6924664602683177,
1154
+ "grad_norm": 0.41043537855148315,
1155
+ "learning_rate": 8.418596615769048e-06,
1156
+ "loss": 0.408,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 1.7027863777089784,
1161
+ "grad_norm": 0.41550594568252563,
1162
+ "learning_rate": 8.308655914332599e-06,
1163
+ "loss": 0.4129,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 1.7131062951496387,
1168
+ "grad_norm": 0.4488890469074249,
1169
+ "learning_rate": 8.198925269852251e-06,
1170
+ "loss": 0.4077,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 1.7234262125902993,
1175
+ "grad_norm": 0.3980523347854614,
1176
+ "learning_rate": 8.089418310356379e-06,
1177
+ "loss": 0.4086,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 1.7337461300309598,
1182
+ "grad_norm": 0.43064674735069275,
1183
+ "learning_rate": 7.980148636092719e-06,
1184
+ "loss": 0.4097,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 1.74406604747162,
1189
+ "grad_norm": 0.4358462393283844,
1190
+ "learning_rate": 7.871129817839304e-06,
1191
+ "loss": 0.4032,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 1.7543859649122808,
1196
+ "grad_norm": 0.42179906368255615,
1197
+ "learning_rate": 7.762375395219045e-06,
1198
+ "loss": 0.4142,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 1.7647058823529411,
1203
+ "grad_norm": 0.44796890020370483,
1204
+ "learning_rate": 7.653898875018151e-06,
1205
+ "loss": 0.4081,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 1.7750257997936016,
1210
+ "grad_norm": 0.40410351753234863,
1211
+ "learning_rate": 7.545713729508673e-06,
1212
+ "loss": 0.4066,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 1.7853457172342622,
1217
+ "grad_norm": 0.4304727613925934,
1218
+ "learning_rate": 7.437833394775283e-06,
1219
+ "loss": 0.408,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 1.7956656346749225,
1224
+ "grad_norm": 0.4234323799610138,
1225
+ "learning_rate": 7.330271269046614e-06,
1226
+ "loss": 0.4111,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 1.8059855521155832,
1231
+ "grad_norm": 0.42498621344566345,
1232
+ "learning_rate": 7.223040711031225e-06,
1233
+ "loss": 0.4084,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 1.8163054695562435,
1238
+ "grad_norm": 0.41671907901763916,
1239
+ "learning_rate": 7.116155038258531e-06,
1240
+ "loss": 0.4069,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 1.826625386996904,
1245
+ "grad_norm": 0.42239654064178467,
1246
+ "learning_rate": 7.009627525424836e-06,
1247
+ "loss": 0.4072,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 1.8369453044375645,
1252
+ "grad_norm": 0.41593438386917114,
1253
+ "learning_rate": 6.903471402744662e-06,
1254
+ "loss": 0.4038,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 1.8472652218782248,
1259
+ "grad_norm": 0.4209601879119873,
1260
+ "learning_rate": 6.797699854307631e-06,
1261
+ "loss": 0.401,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 1.8575851393188856,
1266
+ "grad_norm": 0.4174908995628357,
1267
+ "learning_rate": 6.692326016441054e-06,
1268
+ "loss": 0.4019,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 1.8679050567595459,
1273
+ "grad_norm": 0.42820972204208374,
1274
+ "learning_rate": 6.587362976078463e-06,
1275
+ "loss": 0.4013,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 1.8782249742002064,
1280
+ "grad_norm": 0.41011422872543335,
1281
+ "learning_rate": 6.48282376913429e-06,
1282
+ "loss": 0.4074,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 1.888544891640867,
1287
+ "grad_norm": 0.41199740767478943,
1288
+ "learning_rate": 6.3787213788848376e-06,
1289
+ "loss": 0.4073,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 1.8988648090815272,
1294
+ "grad_norm": 0.4312268793582916,
1295
+ "learning_rate": 6.2750687343558535e-06,
1296
+ "loss": 0.4039,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 1.909184726522188,
1301
+ "grad_norm": 0.42642372846603394,
1302
+ "learning_rate": 6.171878708716778e-06,
1303
+ "loss": 0.399,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 1.9195046439628483,
1308
+ "grad_norm": 0.42894232273101807,
1309
+ "learning_rate": 6.069164117681978e-06,
1310
+ "loss": 0.4013,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 1.9298245614035088,
1315
+ "grad_norm": 0.40852513909339905,
1316
+ "learning_rate": 5.966937717919072e-06,
1317
+ "loss": 0.3988,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 1.9401444788441693,
1322
+ "grad_norm": 0.41867920756340027,
1323
+ "learning_rate": 5.86521220546463e-06,
1324
+ "loss": 0.4033,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 1.9504643962848296,
1329
+ "grad_norm": 0.41800442337989807,
1330
+ "learning_rate": 5.764000214147389e-06,
1331
+ "loss": 0.4033,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 1.9607843137254903,
1336
+ "grad_norm": 0.39704328775405884,
1337
+ "learning_rate": 5.663314314019172e-06,
1338
+ "loss": 0.4031,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 1.9711042311661506,
1343
+ "grad_norm": 0.42239245772361755,
1344
+ "learning_rate": 5.563167009793775e-06,
1345
+ "loss": 0.4045,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 1.9814241486068112,
1350
+ "grad_norm": 0.4174403250217438,
1351
+ "learning_rate": 5.463570739293906e-06,
1352
+ "loss": 0.404,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 1.9917440660474717,
1357
+ "grad_norm": 0.42525631189346313,
1358
+ "learning_rate": 5.364537871906488e-06,
1359
+ "loss": 0.4016,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 2.002063983488132,
1364
+ "grad_norm": 0.5702281594276428,
1365
+ "learning_rate": 5.2660807070464435e-06,
1366
+ "loss": 0.3937,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 2.0123839009287927,
1371
+ "grad_norm": 0.46447283029556274,
1372
+ "learning_rate": 5.16821147262915e-06,
1373
+ "loss": 0.3525,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 2.022703818369453,
1378
+ "grad_norm": 0.42777228355407715,
1379
+ "learning_rate": 5.070942323551802e-06,
1380
+ "loss": 0.348,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 2.0330237358101133,
1385
+ "grad_norm": 0.4387170374393463,
1386
+ "learning_rate": 4.974285340183819e-06,
1387
+ "loss": 0.3402,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 2.043343653250774,
1392
+ "grad_norm": 0.43583065271377563,
1393
+ "learning_rate": 4.878252526866541e-06,
1394
+ "loss": 0.3448,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 2.0536635706914343,
1399
+ "grad_norm": 0.4168053865432739,
1400
+ "learning_rate": 4.782855810422314e-06,
1401
+ "loss": 0.3459,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 2.063983488132095,
1406
+ "grad_norm": 0.4188889265060425,
1407
+ "learning_rate": 4.688107038673269e-06,
1408
+ "loss": 0.3413,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 2.0743034055727554,
1413
+ "grad_norm": 0.4150793254375458,
1414
+ "learning_rate": 4.594017978969851e-06,
1415
+ "loss": 0.3448,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 2.0846233230134157,
1420
+ "grad_norm": 0.40199384093284607,
1421
+ "learning_rate": 4.50060031672939e-06,
1422
+ "loss": 0.3452,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 2.0949432404540764,
1427
+ "grad_norm": 0.4228343069553375,
1428
+ "learning_rate": 4.407865653984819e-06,
1429
+ "loss": 0.3482,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 2.1052631578947367,
1434
+ "grad_norm": 0.41736671328544617,
1435
+ "learning_rate": 4.315825507943746e-06,
1436
+ "loss": 0.3419,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 2.1155830753353975,
1441
+ "grad_norm": 0.41220712661743164,
1442
+ "learning_rate": 4.224491309558092e-06,
1443
+ "loss": 0.3406,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 2.1259029927760578,
1448
+ "grad_norm": 0.4050326347351074,
1449
+ "learning_rate": 4.133874402104404e-06,
1450
+ "loss": 0.3437,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 2.136222910216718,
1455
+ "grad_norm": 0.43302711844444275,
1456
+ "learning_rate": 4.043986039775074e-06,
1457
+ "loss": 0.3414,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 2.146542827657379,
1462
+ "grad_norm": 0.411955863237381,
1463
+ "learning_rate": 3.954837386280642e-06,
1464
+ "loss": 0.3438,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 2.156862745098039,
1469
+ "grad_norm": 0.41292956471443176,
1470
+ "learning_rate": 3.8664395134632834e-06,
1471
+ "loss": 0.3449,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 2.1671826625387,
1476
+ "grad_norm": 0.42248064279556274,
1477
+ "learning_rate": 3.77880339992177e-06,
1478
+ "loss": 0.345,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 2.17750257997936,
1483
+ "grad_norm": 0.4186584949493408,
1484
+ "learning_rate": 3.6919399296479553e-06,
1485
+ "loss": 0.34,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 2.1878224974200204,
1490
+ "grad_norm": 0.411190003156662,
1491
+ "learning_rate": 3.605859890675043e-06,
1492
+ "loss": 0.3455,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 2.198142414860681,
1497
+ "grad_norm": 0.4268835186958313,
1498
+ "learning_rate": 3.520573973737775e-06,
1499
+ "loss": 0.3422,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 2.2084623323013415,
1504
+ "grad_norm": 0.42581525444984436,
1505
+ "learning_rate": 3.4360927709446813e-06,
1506
+ "loss": 0.3461,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 2.218782249742002,
1511
+ "grad_norm": 0.41429799795150757,
1512
+ "learning_rate": 3.3524267744625793e-06,
1513
+ "loss": 0.3444,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 2.2291021671826625,
1518
+ "grad_norm": 0.40858539938926697,
1519
+ "learning_rate": 3.2695863752135203e-06,
1520
+ "loss": 0.3437,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 2.239422084623323,
1525
+ "grad_norm": 0.4122130870819092,
1526
+ "learning_rate": 3.1875818615842756e-06,
1527
+ "loss": 0.3424,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 2.2497420020639836,
1532
+ "grad_norm": 0.4092227518558502,
1533
+ "learning_rate": 3.1064234181485574e-06,
1534
+ "loss": 0.3436,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 2.260061919504644,
1539
+ "grad_norm": 0.4187150299549103,
1540
+ "learning_rate": 3.0261211244021527e-06,
1541
+ "loss": 0.3457,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 2.2703818369453046,
1546
+ "grad_norm": 0.411109060049057,
1547
+ "learning_rate": 2.9466849535111052e-06,
1548
+ "loss": 0.3407,
1549
+ "step": 2200
1550
+ }
1551
+ ],
1552
+ "logging_steps": 10,
1553
+ "max_steps": 2907,
1554
+ "num_input_tokens_seen": 0,
1555
+ "num_train_epochs": 3,
1556
+ "save_steps": 200,
1557
+ "stateful_callbacks": {
1558
+ "TrainerControl": {
1559
+ "args": {
1560
+ "should_epoch_stop": false,
1561
+ "should_evaluate": false,
1562
+ "should_log": false,
1563
+ "should_save": true,
1564
+ "should_training_stop": false
1565
+ },
1566
+ "attributes": {}
1567
+ }
1568
+ },
1569
+ "total_flos": 1.0079834794808784e+20,
1570
+ "train_batch_size": 2,
1571
+ "trial_name": null,
1572
+ "trial_params": null
1573
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd96ab37067c845718dd15f8ecff756a27c27ee8f0c782c87bbd47a15347bb95
3
+ size 6456