cheesyFishes
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -30,7 +30,10 @@ To know more about the model, read the [announcement blogpost](https://huggingfa
|
|
30 |
|
31 |
# Usage
|
32 |
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
```python
|
36 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
@@ -46,6 +49,7 @@ min_pixels = 1 * 28 * 28
|
|
46 |
# Load the embedding model and processor
|
47 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
48 |
'llamaindex/vdr-2b-multi-v1',
|
|
|
49 |
attn_implementation="flash_attention_2",
|
50 |
torch_dtype=torch.bfloat16,
|
51 |
device_map="cuda:0"
|
@@ -105,6 +109,7 @@ def encode_queries(queries: list[str], dimension: int) -> torch.Tensor:
|
|
105 |
```
|
106 |
|
107 |
**Encode documents**
|
|
|
108 |
```python
|
109 |
def round_by_factor(number: float, factor: int) -> int:
|
110 |
return round(number / factor) * factor
|
@@ -167,6 +172,59 @@ def encode_documents(documents: list[Image.Image], dimension: int):
|
|
167 |
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
|
168 |
```
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
# Training
|
171 |
|
172 |
The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) dataset that consinsists of 500k high quality, multilingual query image pairs. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives.
|
|
|
30 |
|
31 |
# Usage
|
32 |
|
33 |
+
<details>
|
34 |
+
<summary>
|
35 |
+
via HuggingFace Transformers
|
36 |
+
</summary>
|
37 |
|
38 |
```python
|
39 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
|
|
49 |
# Load the embedding model and processor
|
50 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
51 |
'llamaindex/vdr-2b-multi-v1',
|
52 |
+
# These are the recommended kwargs for the model, but change them as needed
|
53 |
attn_implementation="flash_attention_2",
|
54 |
torch_dtype=torch.bfloat16,
|
55 |
device_map="cuda:0"
|
|
|
109 |
```
|
110 |
|
111 |
**Encode documents**
|
112 |
+
|
113 |
```python
|
114 |
def round_by_factor(number: float, factor: int) -> int:
|
115 |
return round(number / factor) * factor
|
|
|
172 |
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
|
173 |
```
|
174 |
|
175 |
+
</details>
|
176 |
+
|
177 |
+
<details>
|
178 |
+
<summary>
|
179 |
+
via LlamaIndex
|
180 |
+
</summary>
|
181 |
+
|
182 |
+
```bash
|
183 |
+
pip install -U llama-index-embeddings-huggingface
|
184 |
+
```
|
185 |
+
|
186 |
+
```python
|
187 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
188 |
+
|
189 |
+
model = HuggingFaceEmbedding(
|
190 |
+
model_name_or_path="llamaindex/vdr-2b-multi-v1",
|
191 |
+
device="mps",
|
192 |
+
trust_remote_code=True,
|
193 |
+
)
|
194 |
+
|
195 |
+
embeddings = model.get_image_embedding("image.png")
|
196 |
+
```
|
197 |
+
|
198 |
+
</details>
|
199 |
+
|
200 |
+
|
201 |
+
<details>
|
202 |
+
<summary>
|
203 |
+
via SentenceTransformers
|
204 |
+
</summary>
|
205 |
+
|
206 |
+
```python
|
207 |
+
from sentence_transformers import SentenceTransformer
|
208 |
+
|
209 |
+
model = SentenceTransformer(
|
210 |
+
model_name_or_path="llamaindex/vdr-2b-multi-v1",
|
211 |
+
device="mps",
|
212 |
+
trust_remote_code=True,
|
213 |
+
# These are the recommended kwargs for the model, but change them as needed
|
214 |
+
model_kwargs={
|
215 |
+
"torch_dtype": torch.bfloat16,
|
216 |
+
"device_map": "cuda:0",
|
217 |
+
"attn_implementation": "flash_attention_2"
|
218 |
+
},
|
219 |
+
)
|
220 |
+
|
221 |
+
embeddings = model.encode("image.png")
|
222 |
+
```
|
223 |
+
|
224 |
+
</details>
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
# Training
|
229 |
|
230 |
The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) dataset that consinsists of 500k high quality, multilingual query image pairs. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives.
|