ybelkada commited on
Commit
87b1bc3
·
1 Parent(s): e188138

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: image-to-text
5
+ inference: false
6
+ arxiv: 2304.08485
7
+ ---
8
+ # BakLLaVA Model Card
9
+
10
+ BakLlava is a model that is derived from the original Llava architecture, that uses Mistral-7b as a text backbone.
11
+
12
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7e345f92b20f7a38bf47a/V5lpOHWGGYJ2yPpEo_8i1.png)
13
+
14
+ Below is the model card of BakLlava model 7b, which is copied from the original BakLlava model card that you can find [here](https://huggingface.co/SkunkworksAI/BakLLaVA-1).
15
+
16
+ > BakLLaVA 1 is a Mistral 7B base augmented with the LLaVA 1.5 architecture. In this first version, we showcase that a Mistral 7B base outperforms Llama 2 13B on several benchmarks.
17
+ You can run BakLLaVA-1 on our repo. We are currently updating it to make it easier for you to finetune and inference. (https://github.com/SkunkworksAI/BakLLaVA).
18
+
19
+ > Note: BakLLaVA-1 is fully open-source but was trained on certain data that includes LLaVA's corpus which is not commercially permissive. We will fix this in the upcoming release.
20
+
21
+ > BakLLaVA 2 is cooking with a significantly larger (commercially viable) dataset and a novel architecture that expands beyond the current LLaVA method. BakLLaVA-2 will do away with the restrictions of BakLLaVA-1.
22
+
23
+
24
+ ## How to use the model
25
+
26
+ First, make sure to have `transformers >= 4.35.3`.
27
+ The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
28
+
29
+ ### Using `pipeline`:
30
+
31
+
32
+ ```python
33
+ from transformers import pipeline
34
+ from PIL import Image
35
+ import request
36
+
37
+ model_id = "llava-hf/bakLlava-v1-hf"
38
+ pipe = pipeline("image-to-text", model=model_id)
39
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
40
+
41
+ image = Image.open(requests.get(url, stream=True).raw)
42
+ prompt = "<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
43
+
44
+ outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
45
+ print(outputs)
46
+ >>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
47
+ ```
48
+
49
+ ### Using pure `transformers`:
50
+
51
+ Below is an example script to run generation in `float16` precision on a GPU device:
52
+
53
+ ```python
54
+ import requests
55
+ from PIL import Image
56
+
57
+ import torch
58
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
59
+
60
+ model_id = "llava-hf/bakLlava-v1-hf"
61
+
62
+ prompt = "<image> \nUSER: What are these?\nASSISTANT:"
63
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
64
+
65
+ model = LlavaForConditionalGeneration.from_pretrained(
66
+ model_id,
67
+ torch_dtype=torch.float16,
68
+ low_cpu_mem_usage=True,
69
+ ).to(0)
70
+
71
+
72
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
73
+ inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
74
+
75
+ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
76
+ print(processor.decode(output[0][2:], skip_special_tokens=True))
77
+ ```
78
+
79
+ ### Model optimization
80
+
81
+ #### 4-bit quantization through `bitsandbytes` library
82
+
83
+ First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
84
+
85
+ ```diff
86
+ model = LlavaForConditionalGeneration.from_pretrained(
87
+ model_id,
88
+ torch_dtype=torch.float16,
89
+ low_cpu_mem_usage=True,
90
+ + load_in_4bit=True
91
+ )
92
+ ```
93
+
94
+ #### Use Flash-Attention 2 to further speed-up generation
95
+
96
+ First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
97
+
98
+ ```diff
99
+ model = LlavaForConditionalGeneration.from_pretrained(
100
+ model_id,
101
+ torch_dtype=torch.float16,
102
+ low_cpu_mem_usage=True,
103
+ + use_flash_attention_2=True
104
+ ).to(0)
105
+ ```
106
+
107
+ # Evaluations
108
+
109
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7e345f92b20f7a38bf47a/qdYubrBmF7ztAHgdfkkwG.png)
110
+
111
+ # Training dataset
112
+
113
+ - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
114
+ - 158K GPT-generated multimodal instruction-following data.
115
+ - 450K academic-task-oriented VQA data mixture.
116
+ - 40K ShareGPT data.
117
+ - Additional private data (permissive)
118
+
119
+ ## License
120
+ Llama 2 is licensed under the LLAMA 2 Community License,
121
+ Copyright (c) Meta Platforms, Inc. All Rights Reserved.