Taka008 commited on
Commit
b325d10
·
verified ·
1 Parent(s): 9776021

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +158 -0
README.md CHANGED
@@ -1,3 +1,161 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ - ja
6
+ programming_language:
7
+ - C
8
+ - C++
9
+ - C#
10
+ - Go
11
+ - Java
12
+ - JavaScript
13
+ - Lua
14
+ - PHP
15
+ - Python
16
+ - Ruby
17
+ - Rust
18
+ - Scala
19
+ - TypeScript
20
+ library_name: transformers
21
+ pipeline_tag: text-generation
22
+ inference: false
23
  ---
24
+ # llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1
25
+
26
+ This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan.
27
+
28
+ | Model Variant |
29
+ | :--- |
30
+ |**Instruction models**|
31
+ | [llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1) |
32
+ | [llm-jp-13b-instruct-full-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-v1.0) |
33
+ | [llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0) |
34
+ | [llm-jp-13b-instruct-full-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly-oasst-v1.0) |
35
+ | [llm-jp-13b-instruct-lora-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1) |
36
+ | [llm-jp-13b-instruct-lora-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-v1.0) |
37
+ | [llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0) |
38
+ | [llm-jp-13b-instruct-lora-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly-oasst-v1.0) |
39
+
40
+
41
+ | |
42
+ | :--- |
43
+ |**Pre-trained models**|
44
+ | [llm-jp-13b-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-v1.0) |
45
+ | [llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) |
46
+ Checkpoints format: Hugging Face Transformers (Megatron-DeepSpeed format models are available [here](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt))
47
+
48
+
49
+ ## Required Libraries and Their Versions
50
+
51
+ - torch>=2.0.0
52
+ - transformers>=4.34.0
53
+ - tokenizers>=0.14.0
54
+ - accelerate==0.23.0
55
+
56
+ ## Usage
57
+
58
+ ```python
59
+ import torch
60
+ from transformers import AutoTokenizer, AutoModelForCausalLM
61
+ tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0")
62
+ model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0", device_map="auto", torch_dtype=torch.float16)
63
+ text = "自然言語処理とは何か"
64
+ text = text + "### 回答:"
65
+ tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device)
66
+ with torch.no_grad():
67
+ output = model.generate(
68
+ tokenized_input,
69
+ max_new_tokens=100,
70
+ do_sample=True,
71
+ top_p=0.95,
72
+ temperature=0.7,
73
+ )[0]
74
+ print(tokenizer.decode(output))
75
+ ```
76
+
77
+
78
+ ## Model Details
79
+
80
+ - **Model type:** Transformer-based Language Model
81
+ - **Total seen tokens:** 300B
82
+
83
+ |Model|Params|Layers|Hidden size|Heads|Context length|
84
+ |:---:|:---:|:---:|:---:|:---:|:---:|
85
+ |13b model|13b|40|5120|40|2048|
86
+ |1.3b model|1.3b|24|2048|16|2048|
87
+
88
+
89
+ ## Training
90
+
91
+ - **Pre-training:**
92
+ - **Hardware:** 96 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
93
+ - **Software:** Megatron-DeepSpeed
94
+
95
+ - **Instruction tuning:**
96
+ - **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
97
+ - **Software:** [TRL](https://github.com/huggingface/trl), [PEFT](https://github.com/huggingface/peft), and [DeepSpeed](https://github.com/microsoft/DeepSpeed)
98
+
99
+ ## Tokenizer
100
+ The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
101
+ The vocabulary entries were converted from [`llm-jp-tokenizer v2.1 (50k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.1).
102
+ Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure.
103
+ - **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0`
104
+ - **Training algorithm:** SentencePiece Unigram byte-fallback
105
+ - **Training data:** A subset of the datasets for model pre-training
106
+ - **Vocabulary size:** 50,570 (mixed vocabulary of Japanese, English, and source code)
107
+
108
+
109
+ ## Datasets
110
+
111
+ ### Pre-training
112
+
113
+ The models have been pre-trained using a blend of the following datasets.
114
+
115
+ | Language | Dataset | Tokens|
116
+ |:---:|:---:|:---:|
117
+ |Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.5B
118
+ ||[mC4](https://huggingface.co/datasets/mc4)|136B
119
+ |English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|5B
120
+ ||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|135B
121
+ |Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|10B
122
+
123
+ The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens.
124
+ We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data.
125
+
126
+ ### Instruction tuning
127
+
128
+ The models have been fine-tuned on the following datasets.
129
+
130
+ | Language | Dataset | description |
131
+ |:---|:---:|:---:|
132
+ |Japanese|[jaster](https://github.com/llm-jp/llm-jp-eval)| An automatically transformed data from the existing Japanese NLP datasets |
133
+ |English|[databricks-dolly-15k-en](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-en)| Identical to [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) |
134
+ |Japanese|[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| A translated one by DeepL in LLM-jp |
135
+ |English|[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| English subset of [oasst1 dataset](https://huggingface.co/datasets/OpenAssistant/oasst1) |
136
+ |Japanese|[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A translated one by DeepL in LLM-jp |
137
+ |Japanese|[ichikara_003_001](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/)| ichikara-instruction dataset (ver.003-001)
138
+
139
+
140
+ ## Evaluation
141
+ You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) for the evaluation.
142
+
143
+ ## Risks and Limitations
144
+
145
+ The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
146
+
147
+
148
+ ## Send Questions to
149
+
150
+ llm-jp(at)nii.ac.jp
151
+
152
+
153
+ ## License
154
+
155
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
156
+
157
+
158
+ ## Model Card Authors
159
+ *The names are listed in alphabetical order.*
160
+
161
+ Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takashi Kodama, Takumi Okamoto.