doberst commited on
Commit
9cc8689
·
verified ·
1 Parent(s): f87fbf6

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -26
README.md CHANGED
@@ -6,27 +6,23 @@ license: apache-2.0
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
- **bling-qa-tool** is a 4_K_M quantized GGUF version of bling-tiny-llama-1b-v0, providing a small, fast inference implementation.
10
 
11
- Load in your favorite GGUF inference engine (see details in config.json to set up the prompt template), or try with llmware as follows:
12
 
13
- from llmware.models import ModelCatalog
14
 
15
- # to load the model and make a basic inference
16
- qa_tool = ModelCatalog().load_model("bling-qa-tool")
17
- response = qa_tool.function_call(text_sample)
18
-
19
- # this one line will download the model and run a series of tests
20
- ModelCatalog().test_run("bling-qa-tool", verbose=True)
21
-
22
 
23
- Slim models can also be loaded even more simply as part of a multi-model, multi-step LLMfx calls:
24
 
25
- from llmware.agents import LLMfx
 
 
 
 
26
 
27
- llm_fx = LLMfx()
28
- llm_fx.load_tool("quick_question")
29
- response = llm_fx.quick_question(text)
30
 
31
 
32
  ### Model Description
@@ -37,17 +33,9 @@ Slim models can also be loaded even more simply as part of a multi-model, multi-
37
  - **Model type:** GGUF
38
  - **Language(s) (NLP):** English
39
  - **License:** Apache 2.0
40
- - **Quantized from model:** llmware/bling-tiny-llama-1b-v0
41
-
42
- ## Uses
43
-
44
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
-
46
- Model instructions, details and test samples have been packaged into the config.json file in the repository, along with the GGUF file.
47
-
48
 
49
  ## Model Card Contact
50
 
51
- Darren Oberst & llmware team
52
-
53
-
 
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
+ **dragon-mistral-answer-tool** is a quantized version of DRAGON Mistral 7B, with 4_K_M GGUF quantization, providing a fast, small inference implementation for use on CPUs.
10
 
11
+ [**dragon-mistral-7b**](https://huggingface.co/llmware/dragon-mistral-7b-v0) is a fact-based question-answering model, optimized for complex business documents.
12
 
13
+ To pull the model via API:
14
 
15
+ from huggingface_hub import snapshot_download
16
+ snapshot_download("llmware/dragon-mistral-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
 
 
 
 
 
17
 
 
18
 
19
+ Load in your favorite GGUF inference engine, or try with llmware as follows:
20
+
21
+ from llmware.models import ModelCatalog
22
+ model = ModelCatalog().load_model("dragon-mistral-answer-tool")
23
+ response = model.inference(query, add_context=text_sample)
24
 
25
+ Note: please review [**config.json**](https://huggingface.co/llmware/dragon-mistral-answer-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
 
 
26
 
27
 
28
  ### Model Description
 
33
  - **Model type:** GGUF
34
  - **Language(s) (NLP):** English
35
  - **License:** Apache 2.0
36
+ - **Quantized from model:** [llmware/dragon-mistral](https://huggingface.co/llmware/dragon-mistral-7b-v0/)
37
+
 
 
 
 
 
 
38
 
39
  ## Model Card Contact
40
 
41
+ Darren Oberst & llmware team