doberst commited on
Commit
09c454b
·
verified ·
1 Parent(s): 2d0fb3b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -1,26 +1,26 @@
1
  ---
2
  license: apache-2.0
3
  inference: false
4
- tags: [green, llmware-rag, p1, ov]
5
  ---
6
 
7
- # bling-tiny-llama-ov
8
 
9
- **bling-tiny-llama-ov** is a very small, very fast fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, and quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
10
 
11
- This model is one of the smallest and fastest in the series. For higher accuracy, look at larger models in the BLING/DRAGON series.
12
 
13
  ### Model Description
14
 
15
  - **Developed by:** llmware
16
- - **Model type:** tinyllama
17
- - **Parameters:** 1.1 billion
18
  - **Quantization:** int4
19
- - **Model Parent:** [llmware/bling-tiny-llama-v0](https://www.huggingface.co/llmware/bling-tiny-llama-v0)
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
  - **Uses:** Fact-based question-answering, RAG
23
- - **RAG Benchmark Accuracy Score:** 86.5
24
 
25
 
26
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
 
1
  ---
2
  license: apache-2.0
3
  inference: false
4
+ tags: [green, llmware-rag, p3, ov]
5
  ---
6
 
7
+ # bling-phi-3-ov
8
 
9
+ **bling-phi-3-ov** is a fast and accurate fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, and quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
10
 
11
+ This model is one of the most accurate in the BLING/DRAGON model series, which is especially notable given the relative small size and is ideal for use on AI PCs and local inferencing.
12
 
13
  ### Model Description
14
 
15
  - **Developed by:** llmware
16
+ - **Model type:** phi-3
17
+ - **Parameters:** 3.8 billion
18
  - **Quantization:** int4
19
+ - **Model Parent:** [llmware/bling-phi-3](https://www.huggingface.co/llmware/bling-phi-3)
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
  - **Uses:** Fact-based question-answering, RAG
23
+ - **RAG Benchmark Accuracy Score:** 99.5
24
 
25
 
26
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)