first model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar_lander_model.zip +3 -0
- lunar_lander_model/_stable_baselines3_version +1 -0
- lunar_lander_model/data +94 -0
- lunar_lander_model/policy.optimizer.pth +3 -0
- lunar_lander_model/policy.pth +3 -0
- lunar_lander_model/pytorch_variables.pth +3 -0
- lunar_lander_model/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 232.96 +/- 23.88
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faa88dcf830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa88dcf8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa88dcf950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa88dcf9e0>", "_build": "<function ActorCriticPolicy._build at 0x7faa88dcfa70>", "forward": "<function ActorCriticPolicy.forward at 0x7faa88dcfb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa88dcfb90>", "_predict": "<function ActorCriticPolicy._predict at 0x7faa88dcfc20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa88dcfcb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa88dcfd40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa88dcfdd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faa88d9a7e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652119559.3141832, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2MGrpfSHQ/l12MvW4oxr5de7g8F5iqvQAAAAAAAAAAJqK0PY/mWbr2gXU3GsymMQ1vsrq+c4u2AACAPwAAgD8m9Lm9dfoRP5rBvb3PsIG+jhLevOqZOzwAAAAAAAAAAIC0Cb321F66uDXcOHeoTDNeE3W6XAMAuAAAgD8AAIA/5t1rvpydBj3b/js6o8DGuBsyl77Lg605AACAPwAAgD8AGMg8hbuzubrtlDhubws0EAgdO5bPrrcAAIA/AACAP2YsNTwUvKu68TMQujOl97XJaHs6UmQlOQAAgD8AAIA/oFpLPvhujDzWrf8683nhvDk/GT5159c9AACAPwAAAAAmRpO+Xx+oPEpsPTuFYJe5NU8RvsYY77IAAIA/AACAPzMYwb0UVIm6hgBjOxbTZjimD1K6n6gcuQAAgD8AAIA/wKC1va4fiLoOhjg4xHkIMi5LNruO9VO3AACAPwAAgD9aMMo9KfhXuosz4boP2Fe2UYnOOp7jAjoAAIA/AACAPw2jDD57NJ07W8RDvQGUqrvWUDo9uxebvAAAgD8AAIA/s+FnvW9xGj9Do8+9ZuQ8vi2TYby9FQs9AAAAAAAAAACWOXS+UGiqPr5Omj2OLMC96sAuPYXDnLwAAAAAAAAAABopBr0wSpM/rV3avR60kb40Kl+88pQPvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0nMLXYkwFMCUhpRSlIwBbJRNRAGMAXSUR0CRZjG3WnTBdX2UKGgGaAloD0MI7fKtD+v3UkCUhpRSlGgVTegDaBZHQJFtvv7WNFV1fZQoaAZoCWgPQwi5wyYyc4hcQJSGlFKUaBVN6ANoFkdAkXMB9LHuJHV9lChoBmgJaA9DCATidf2CxTvAlIaUUpRoFU1OAWgWR0CRdIF8G9pRdX2UKGgGaAloD0MILSP1nsosZECUhpRSlGgVTegDaBZHQJF4DyGzru91fZQoaAZoCWgPQwhWgsXhTHpvQJSGlFKUaBVNpQJoFkdAkXpv24/eL3V9lChoBmgJaA9DCFeW6Cyzp2VAlIaUUpRoFU3oA2gWR0CRfahCdBjXdX2UKGgGaAloD0MIPgeWI+TiYUCUhpRSlGgVTegDaBZHQJGHXhwVCX11fZQoaAZoCWgPQwgVH5+QnYlEQJSGlFKUaBVN6ANoFkdAkZER11W8y3V9lChoBmgJaA9DCHEeTmC6lWZAlIaUUpRoFU3oA2gWR0CRlsfTkQwsdX2UKGgGaAloD0MI1gCloUZKYkCUhpRSlGgVTegDaBZHQJGcnVnVXmx1fZQoaAZoCWgPQwjUtmEUBJJYQJSGlFKUaBVN6ANoFkdAkZ+aBNEgGXV9lChoBmgJaA9DCEPHDirxmWZAlIaUUpRoFU3oA2gWR0CRn/1e0G/vdX2UKGgGaAloD0MIrrfNVIhEckCUhpRSlGgVTe4BaBZHQJGj2MtK7I11fZQoaAZoCWgPQwgMdsO2RWlGQJSGlFKUaBVN6ANoFkdAkaU05U96knV9lChoBmgJaA9DCLA3MSQnRGVAlIaUUpRoFU1lA2gWR0CRp4ueSSvDdX2UKGgGaAloD0MIjzf5LToOVECUhpRSlGgVTegDaBZHQJGwozsQd0d1fZQoaAZoCWgPQwiLwFjfQHBhQJSGlFKUaBVN6ANoFkdAkbDhrSE123V9lChoBmgJaA9DCMqK4eoAA2FAlIaUUpRoFU3oA2gWR0CRunIp6QeWdX2UKGgGaAloD0MInDV4X5WpVUCUhpRSlGgVTegDaBZHQJHAsupS75F1fZQoaAZoCWgPQwjpuvCD8zxcQJSGlFKUaBVN6ANoFkdAkcJs3yZrpXV9lChoBmgJaA9DCIPCoEyjVGVAlIaUUpRoFU3oA2gWR0CRxuIYWLxadX2UKGgGaAloD0MIH2easP1WWkCUhpRSlGgVTegDaBZHQJHJ7Dl5nlJ1fZQoaAZoCWgPQwijHw2nzEBdQJSGlFKUaBVN6ANoFkdAkdnKxgRbr3V9lChoBmgJaA9DCCbGMv0SH2NAlIaUUpRoFU3oA2gWR0CSfbEKVpsXdX2UKGgGaAloD0MIS6/NxkpKW0CUhpRSlGgVTegDaBZHQJKEQka/ATJ1fZQoaAZoCWgPQwj4pumzA+5jQJSGlFKUaBVN6ANoFkdAkorq94/u9nV9lChoBmgJaA9DCGsMOiF00FRAlIaUUpRoFU3oA2gWR0CSjjs0YTCcdX2UKGgGaAloD0MIIjfDDXjOYUCUhpRSlGgVTegDaBZHQJKOohMajvd1fZQoaAZoCWgPQwgmVkYjn7ldQJSGlFKUaBVN6ANoFkdAkpKGoaUA1nV9lChoBmgJaA9DCK6BrRIsXlhAlIaUUpRoFU3oA2gWR0CSk/sIVuaXdX2UKGgGaAloD0MIbhea67QBYUCUhpRSlGgVTegDaBZHQJKWbVnVXmx1fZQoaAZoCWgPQwhmMEYkCgtLQJSGlFKUaBVLkGgWR0CSmbN3np0PdX2UKGgGaAloD0MICJEMObYlWUCUhpRSlGgVTegDaBZHQJKfamXPZ7J1fZQoaAZoCWgPQwgfZ5qw/f9mQJSGlFKUaBVN6ANoFkdAkp+nBHkLhXV9lChoBmgJaA9DCA4SonyB53BAlIaUUpRoFU05AmgWR0CSohTbnHNpdX2UKGgGaAloD0MI78ouGNydYECUhpRSlGgVTegDaBZHQJKnwotthux1fZQoaAZoCWgPQwg4LuOmBsphQJSGlFKUaBVN6ANoFkdAkq0CQT238XV9lChoBmgJaA9DCP27PnPWaV5AlIaUUpRoFU3oA2gWR0CSro33YcvNdX2UKGgGaAloD0MIvokhORlPY0CUhpRSlGgVTegDaBZHQJKyQBzV+Zx1fZQoaAZoCWgPQwjiOsYVl+pnQJSGlFKUaBVN6ANoFkdAkrTgA6uGK3V9lChoBmgJaA9DCFA3UOCdIGFAlIaUUpRoFU3oA2gWR0CS0ONeMQ2/dX2UKGgGaAloD0MIwFsgQXEucECUhpRSlGgVTdYBaBZHQJLXuYu01Il1fZQoaAZoCWgPQwh5eTpXFEtjQJSGlFKUaBVN6ANoFkdAkthEOI68x3V9lChoBmgJaA9DCJ1/u+zXHHFAlIaUUpRoFU2MAWgWR0CS2regL7XQdX2UKGgGaAloD0MI5s+3BUvnV0CUhpRSlGgVTegDaBZHQJLfTJYDDCR1fZQoaAZoCWgPQwgVrdwLTOZgQJSGlFKUaBVN6ANoFkdAkuKlyNn5BXV9lChoBmgJaA9DCK5ITFBDtGFAlIaUUpRoFU3oA2gWR0CS50z1bqyGdX2UKGgGaAloD0MI5ljeVQ/rWkCUhpRSlGgVTegDaBZHQJLo5O+IuXh1fZQoaAZoCWgPQwgCZylZTspZQJSGlFKUaBVN6ANoFkdAkuuCO/+Kj3V9lChoBmgJaA9DCNLfS+FBEV5AlIaUUpRoFU3oA2gWR0CS7vb4agmJdX2UKGgGaAloD0MIm8sNhrrsYkCUhpRSlGgVTegDaBZHQJL0mb3Gn4x1fZQoaAZoCWgPQwiXVG03wfhiQJSGlFKUaBVN6ANoFkdAkvTYqTbFj3V9lChoBmgJaA9DCMFXdOs1uGNAlIaUUpRoFU3oA2gWR0CS92FvAGjcdX2UKGgGaAloD0MIGHrE6LncYkCUhpRSlGgVTegDaBZHQJL9WiEg4fh1fZQoaAZoCWgPQwhEaW/whQkkQJSGlFKUaBVN6ANoFkdAkwSYVymygXV9lChoBmgJaA9DCDJWm/9Xll9AlIaUUpRoFU3oA2gWR0CTCG9WIXTFdX2UKGgGaAloD0MIvALRkzKTYECUhpRSlGgVTegDaBZHQJO/FRoAXEZ1fZQoaAZoCWgPQwg7jEl/r+huQJSGlFKUaBVN8gFoFkdAk8G1wtJ4B3V9lChoBmgJaA9DCF69iowOM2RAlIaUUpRoFU3oA2gWR0CTxWZ9/jKgdX2UKGgGaAloD0MI2C0CY31gZUCUhpRSlGgVTegDaBZHQJPF5DQZ4wB1fZQoaAZoCWgPQwjpJjEIrGRjQJSGlFKUaBVN6ANoFkdAk8fLE5yU93V9lChoBmgJaA9DCGa+g584tVxAlIaUUpRoFU3oA2gWR0CTy4/NJOFhdX2UKGgGaAloD0MI4GQbuAP1R0CUhpRSlGgVTegDaBZHQJPOkDoyKvV1fZQoaAZoCWgPQwhsIchBSfZwQJSGlFKUaBVNLwJoFkdAk9F+Qp4KQnV9lChoBmgJaA9DCB8r+G2IL2NAlIaUUpRoFU3oA2gWR0CT0nwSJ0nxdX2UKGgGaAloD0MI/OB86liDW0CUhpRSlGgVTegDaBZHQJPTm2hIvrZ1fZQoaAZoCWgPQwilh6HVyXBuQJSGlFKUaBVNqgNoFkdAk9R6PCEYfnV9lChoBmgJaA9DCJ0tILSeVWBAlIaUUpRoFU3oA2gWR0CT1Wt4RmK7dX2UKGgGaAloD0MINnf0v1zeXUCUhpRSlGgVTegDaBZHQJPc2nLq2Sd1fZQoaAZoCWgPQwiFBmLZzB9iQJSGlFKUaBVN6ANoFkdAk90QlOXVsnV9lChoBmgJaA9DCHCzeLEwmFtAlIaUUpRoFU3oA2gWR0CT3y6Mir1edX2UKGgGaAloD0MI9ifxuZNJcECUhpRSlGgVTdUBaBZHQJPiFx6v7nB1fZQoaAZoCWgPQwjuPsdHi5hjQJSGlFKUaBVN6ANoFkdAk+rBx1gYxnV9lChoBmgJaA9DCJKtLqcEo29AlIaUUpRoFU1UAmgWR0CT8HfLcKw7dX2UKGgGaAloD0MIHXQJhx5tcUCUhpRSlGgVTWYCaBZHQJP8V2A5Jbt1fZQoaAZoCWgPQwj7eVORiv5qQJSGlFKUaBVNfwJoFkdAlAPIsunMuHV9lChoBmgJaA9DCAr4NZIExmNAlIaUUpRoFU3oA2gWR0CUCZ7LMcIadX2UKGgGaAloD0MIxooaTMO7XUCUhpRSlGgVTegDaBZHQJQPZGrjo6l1fZQoaAZoCWgPQwghkEsceU9oQJSGlFKUaBVN6ANoFkdAlA/HN5dGAnV9lChoBmgJaA9DCF5lbVM8tWJAlIaUUpRoFU3oA2gWR0CUFbgDA8B/dX2UKGgGaAloD0MIYW9iSM7nYUCUhpRSlGgVTegDaBZHQJQY8oYvWYp1fZQoaAZoCWgPQwhOQX428hBkQJSGlFKUaBVN6ANoFkdAlB0WBBiTdXV9lChoBmgJaA9DCPrt68A5TlxAlIaUUpRoFU3oA2gWR0CUHmKIBRyfdX2UKGgGaAloD0MIMzSeCOJAYkCUhpRSlGgVTegDaBZHQJQfiOU+s5p1fZQoaAZoCWgPQwhwtrkxPRlwQJSGlFKUaBVNEwNoFkdAlCAoyCWeH3V9lChoBmgJaA9DCBaFXRQ9X1dAlIaUUpRoFU3oA2gWR0CUKSgaWHDadX2UKGgGaAloD0MI8bvplh2WVkCUhpRSlGgVTegDaBZHQJQpXYXfqHJ1fZQoaAZoCWgPQwjfiO5Z13pfQJSGlFKUaBVN6ANoFkdAlCvOT7l7t3V9lChoBmgJaA9DCLWNP1HZ2G1AlIaUUpRoFU2sAmgWR0CUMcAggX/HdX2UKGgGaAloD0MI4Zf6eVPLbECUhpRSlGgVTRECaBZHQJQyDmPo3aV1fZQoaAZoCWgPQwjgTbfskCBxQJSGlFKUaBVNVANoFkdAlDNEI9kjHHV9lChoBmgJaA9DCG7BUl2AhnFAlIaUUpRoFU2GAmgWR0CUNRQMQVbidX2UKGgGaAloD0MIvi8uVWlGZECUhpRSlGgVTegDaBZHQJQ3tpsXSBt1fZQoaAZoCWgPQwjPoQxVsbBvQJSGlFKUaBVN/gFoFkdAlD080gr6L3V9lChoBmgJaA9DCDBI+rSK8W1AlIaUUpRoFU3fAmgWR0CURYtZmqYJdX2UKGgGaAloD0MI3EYDeAuJbkCUhpRSlGgVTWcCaBZHQJRNUIzFdcB1fZQoaAZoCWgPQwjB5bFm5KRxQJSGlFKUaBVNNgFoFkdAlE/GRNh3JXV9lChoBmgJaA9DCIyiBz6Go2tAlIaUUpRoFU3HAmgWR0CUU19m6GxmdX2UKGgGaAloD0MIWvJ4Wn7obkCUhpRSlGgVTS0CaBZHQJRWXe1rqMZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_lander_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15ab25d813315a735888ef99c43903bc1ee9556ccbe1e5c3c7399fece3d38554
|
3 |
+
size 144110
|
lunar_lander_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar_lander_model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faa88dcf830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa88dcf8c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa88dcf950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa88dcf9e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faa88dcfa70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faa88dcfb00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa88dcfb90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faa88dcfc20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa88dcfcb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa88dcfd40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa88dcfdd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7faa88d9a7e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652119559.3141832,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2MGrpfSHQ/l12MvW4oxr5de7g8F5iqvQAAAAAAAAAAJqK0PY/mWbr2gXU3GsymMQ1vsrq+c4u2AACAPwAAgD8m9Lm9dfoRP5rBvb3PsIG+jhLevOqZOzwAAAAAAAAAAIC0Cb321F66uDXcOHeoTDNeE3W6XAMAuAAAgD8AAIA/5t1rvpydBj3b/js6o8DGuBsyl77Lg605AACAPwAAgD8AGMg8hbuzubrtlDhubws0EAgdO5bPrrcAAIA/AACAP2YsNTwUvKu68TMQujOl97XJaHs6UmQlOQAAgD8AAIA/oFpLPvhujDzWrf8683nhvDk/GT5159c9AACAPwAAAAAmRpO+Xx+oPEpsPTuFYJe5NU8RvsYY77IAAIA/AACAPzMYwb0UVIm6hgBjOxbTZjimD1K6n6gcuQAAgD8AAIA/wKC1va4fiLoOhjg4xHkIMi5LNruO9VO3AACAPwAAgD9aMMo9KfhXuosz4boP2Fe2UYnOOp7jAjoAAIA/AACAPw2jDD57NJ07W8RDvQGUqrvWUDo9uxebvAAAgD8AAIA/s+FnvW9xGj9Do8+9ZuQ8vi2TYby9FQs9AAAAAAAAAACWOXS+UGiqPr5Omj2OLMC96sAuPYXDnLwAAAAAAAAAABopBr0wSpM/rV3avR60kb40Kl+88pQPvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0nMLXYkwFMCUhpRSlIwBbJRNRAGMAXSUR0CRZjG3WnTBdX2UKGgGaAloD0MI7fKtD+v3UkCUhpRSlGgVTegDaBZHQJFtvv7WNFV1fZQoaAZoCWgPQwi5wyYyc4hcQJSGlFKUaBVN6ANoFkdAkXMB9LHuJHV9lChoBmgJaA9DCATidf2CxTvAlIaUUpRoFU1OAWgWR0CRdIF8G9pRdX2UKGgGaAloD0MILSP1nsosZECUhpRSlGgVTegDaBZHQJF4DyGzru91fZQoaAZoCWgPQwhWgsXhTHpvQJSGlFKUaBVNpQJoFkdAkXpv24/eL3V9lChoBmgJaA9DCFeW6Cyzp2VAlIaUUpRoFU3oA2gWR0CRfahCdBjXdX2UKGgGaAloD0MIPgeWI+TiYUCUhpRSlGgVTegDaBZHQJGHXhwVCX11fZQoaAZoCWgPQwgVH5+QnYlEQJSGlFKUaBVN6ANoFkdAkZER11W8y3V9lChoBmgJaA9DCHEeTmC6lWZAlIaUUpRoFU3oA2gWR0CRlsfTkQwsdX2UKGgGaAloD0MI1gCloUZKYkCUhpRSlGgVTegDaBZHQJGcnVnVXmx1fZQoaAZoCWgPQwjUtmEUBJJYQJSGlFKUaBVN6ANoFkdAkZ+aBNEgGXV9lChoBmgJaA9DCEPHDirxmWZAlIaUUpRoFU3oA2gWR0CRn/1e0G/vdX2UKGgGaAloD0MIrrfNVIhEckCUhpRSlGgVTe4BaBZHQJGj2MtK7I11fZQoaAZoCWgPQwgMdsO2RWlGQJSGlFKUaBVN6ANoFkdAkaU05U96knV9lChoBmgJaA9DCLA3MSQnRGVAlIaUUpRoFU1lA2gWR0CRp4ueSSvDdX2UKGgGaAloD0MIjzf5LToOVECUhpRSlGgVTegDaBZHQJGwozsQd0d1fZQoaAZoCWgPQwiLwFjfQHBhQJSGlFKUaBVN6ANoFkdAkbDhrSE123V9lChoBmgJaA9DCMqK4eoAA2FAlIaUUpRoFU3oA2gWR0CRunIp6QeWdX2UKGgGaAloD0MInDV4X5WpVUCUhpRSlGgVTegDaBZHQJHAsupS75F1fZQoaAZoCWgPQwjpuvCD8zxcQJSGlFKUaBVN6ANoFkdAkcJs3yZrpXV9lChoBmgJaA9DCIPCoEyjVGVAlIaUUpRoFU3oA2gWR0CRxuIYWLxadX2UKGgGaAloD0MIH2easP1WWkCUhpRSlGgVTegDaBZHQJHJ7Dl5nlJ1fZQoaAZoCWgPQwijHw2nzEBdQJSGlFKUaBVN6ANoFkdAkdnKxgRbr3V9lChoBmgJaA9DCCbGMv0SH2NAlIaUUpRoFU3oA2gWR0CSfbEKVpsXdX2UKGgGaAloD0MIS6/NxkpKW0CUhpRSlGgVTegDaBZHQJKEQka/ATJ1fZQoaAZoCWgPQwj4pumzA+5jQJSGlFKUaBVN6ANoFkdAkorq94/u9nV9lChoBmgJaA9DCGsMOiF00FRAlIaUUpRoFU3oA2gWR0CSjjs0YTCcdX2UKGgGaAloD0MIIjfDDXjOYUCUhpRSlGgVTegDaBZHQJKOohMajvd1fZQoaAZoCWgPQwgmVkYjn7ldQJSGlFKUaBVN6ANoFkdAkpKGoaUA1nV9lChoBmgJaA9DCK6BrRIsXlhAlIaUUpRoFU3oA2gWR0CSk/sIVuaXdX2UKGgGaAloD0MIbhea67QBYUCUhpRSlGgVTegDaBZHQJKWbVnVXmx1fZQoaAZoCWgPQwhmMEYkCgtLQJSGlFKUaBVLkGgWR0CSmbN3np0PdX2UKGgGaAloD0MICJEMObYlWUCUhpRSlGgVTegDaBZHQJKfamXPZ7J1fZQoaAZoCWgPQwgfZ5qw/f9mQJSGlFKUaBVN6ANoFkdAkp+nBHkLhXV9lChoBmgJaA9DCA4SonyB53BAlIaUUpRoFU05AmgWR0CSohTbnHNpdX2UKGgGaAloD0MI78ouGNydYECUhpRSlGgVTegDaBZHQJKnwotthux1fZQoaAZoCWgPQwg4LuOmBsphQJSGlFKUaBVN6ANoFkdAkq0CQT238XV9lChoBmgJaA9DCP27PnPWaV5AlIaUUpRoFU3oA2gWR0CSro33YcvNdX2UKGgGaAloD0MIvokhORlPY0CUhpRSlGgVTegDaBZHQJKyQBzV+Zx1fZQoaAZoCWgPQwjiOsYVl+pnQJSGlFKUaBVN6ANoFkdAkrTgA6uGK3V9lChoBmgJaA9DCFA3UOCdIGFAlIaUUpRoFU3oA2gWR0CS0ONeMQ2/dX2UKGgGaAloD0MIwFsgQXEucECUhpRSlGgVTdYBaBZHQJLXuYu01Il1fZQoaAZoCWgPQwh5eTpXFEtjQJSGlFKUaBVN6ANoFkdAkthEOI68x3V9lChoBmgJaA9DCJ1/u+zXHHFAlIaUUpRoFU2MAWgWR0CS2regL7XQdX2UKGgGaAloD0MI5s+3BUvnV0CUhpRSlGgVTegDaBZHQJLfTJYDDCR1fZQoaAZoCWgPQwgVrdwLTOZgQJSGlFKUaBVN6ANoFkdAkuKlyNn5BXV9lChoBmgJaA9DCK5ITFBDtGFAlIaUUpRoFU3oA2gWR0CS50z1bqyGdX2UKGgGaAloD0MI5ljeVQ/rWkCUhpRSlGgVTegDaBZHQJLo5O+IuXh1fZQoaAZoCWgPQwgCZylZTspZQJSGlFKUaBVN6ANoFkdAkuuCO/+Kj3V9lChoBmgJaA9DCNLfS+FBEV5AlIaUUpRoFU3oA2gWR0CS7vb4agmJdX2UKGgGaAloD0MIm8sNhrrsYkCUhpRSlGgVTegDaBZHQJL0mb3Gn4x1fZQoaAZoCWgPQwiXVG03wfhiQJSGlFKUaBVN6ANoFkdAkvTYqTbFj3V9lChoBmgJaA9DCMFXdOs1uGNAlIaUUpRoFU3oA2gWR0CS92FvAGjcdX2UKGgGaAloD0MIGHrE6LncYkCUhpRSlGgVTegDaBZHQJL9WiEg4fh1fZQoaAZoCWgPQwhEaW/whQkkQJSGlFKUaBVN6ANoFkdAkwSYVymygXV9lChoBmgJaA9DCDJWm/9Xll9AlIaUUpRoFU3oA2gWR0CTCG9WIXTFdX2UKGgGaAloD0MIvALRkzKTYECUhpRSlGgVTegDaBZHQJO/FRoAXEZ1fZQoaAZoCWgPQwg7jEl/r+huQJSGlFKUaBVN8gFoFkdAk8G1wtJ4B3V9lChoBmgJaA9DCF69iowOM2RAlIaUUpRoFU3oA2gWR0CTxWZ9/jKgdX2UKGgGaAloD0MI2C0CY31gZUCUhpRSlGgVTegDaBZHQJPF5DQZ4wB1fZQoaAZoCWgPQwjpJjEIrGRjQJSGlFKUaBVN6ANoFkdAk8fLE5yU93V9lChoBmgJaA9DCGa+g584tVxAlIaUUpRoFU3oA2gWR0CTy4/NJOFhdX2UKGgGaAloD0MI4GQbuAP1R0CUhpRSlGgVTegDaBZHQJPOkDoyKvV1fZQoaAZoCWgPQwhsIchBSfZwQJSGlFKUaBVNLwJoFkdAk9F+Qp4KQnV9lChoBmgJaA9DCB8r+G2IL2NAlIaUUpRoFU3oA2gWR0CT0nwSJ0nxdX2UKGgGaAloD0MI/OB86liDW0CUhpRSlGgVTegDaBZHQJPTm2hIvrZ1fZQoaAZoCWgPQwilh6HVyXBuQJSGlFKUaBVNqgNoFkdAk9R6PCEYfnV9lChoBmgJaA9DCJ0tILSeVWBAlIaUUpRoFU3oA2gWR0CT1Wt4RmK7dX2UKGgGaAloD0MINnf0v1zeXUCUhpRSlGgVTegDaBZHQJPc2nLq2Sd1fZQoaAZoCWgPQwiFBmLZzB9iQJSGlFKUaBVN6ANoFkdAk90QlOXVsnV9lChoBmgJaA9DCHCzeLEwmFtAlIaUUpRoFU3oA2gWR0CT3y6Mir1edX2UKGgGaAloD0MI9ifxuZNJcECUhpRSlGgVTdUBaBZHQJPiFx6v7nB1fZQoaAZoCWgPQwjuPsdHi5hjQJSGlFKUaBVN6ANoFkdAk+rBx1gYxnV9lChoBmgJaA9DCJKtLqcEo29AlIaUUpRoFU1UAmgWR0CT8HfLcKw7dX2UKGgGaAloD0MIHXQJhx5tcUCUhpRSlGgVTWYCaBZHQJP8V2A5Jbt1fZQoaAZoCWgPQwj7eVORiv5qQJSGlFKUaBVNfwJoFkdAlAPIsunMuHV9lChoBmgJaA9DCAr4NZIExmNAlIaUUpRoFU3oA2gWR0CUCZ7LMcIadX2UKGgGaAloD0MIxooaTMO7XUCUhpRSlGgVTegDaBZHQJQPZGrjo6l1fZQoaAZoCWgPQwghkEsceU9oQJSGlFKUaBVN6ANoFkdAlA/HN5dGAnV9lChoBmgJaA9DCF5lbVM8tWJAlIaUUpRoFU3oA2gWR0CUFbgDA8B/dX2UKGgGaAloD0MIYW9iSM7nYUCUhpRSlGgVTegDaBZHQJQY8oYvWYp1fZQoaAZoCWgPQwhOQX428hBkQJSGlFKUaBVN6ANoFkdAlB0WBBiTdXV9lChoBmgJaA9DCPrt68A5TlxAlIaUUpRoFU3oA2gWR0CUHmKIBRyfdX2UKGgGaAloD0MIMzSeCOJAYkCUhpRSlGgVTegDaBZHQJQfiOU+s5p1fZQoaAZoCWgPQwhwtrkxPRlwQJSGlFKUaBVNEwNoFkdAlCAoyCWeH3V9lChoBmgJaA9DCBaFXRQ9X1dAlIaUUpRoFU3oA2gWR0CUKSgaWHDadX2UKGgGaAloD0MI8bvplh2WVkCUhpRSlGgVTegDaBZHQJQpXYXfqHJ1fZQoaAZoCWgPQwjfiO5Z13pfQJSGlFKUaBVN6ANoFkdAlCvOT7l7t3V9lChoBmgJaA9DCLWNP1HZ2G1AlIaUUpRoFU2sAmgWR0CUMcAggX/HdX2UKGgGaAloD0MI4Zf6eVPLbECUhpRSlGgVTRECaBZHQJQyDmPo3aV1fZQoaAZoCWgPQwjgTbfskCBxQJSGlFKUaBVNVANoFkdAlDNEI9kjHHV9lChoBmgJaA9DCG7BUl2AhnFAlIaUUpRoFU2GAmgWR0CUNRQMQVbidX2UKGgGaAloD0MIvi8uVWlGZECUhpRSlGgVTegDaBZHQJQ3tpsXSBt1fZQoaAZoCWgPQwjPoQxVsbBvQJSGlFKUaBVN/gFoFkdAlD080gr6L3V9lChoBmgJaA9DCDBI+rSK8W1AlIaUUpRoFU3fAmgWR0CURYtZmqYJdX2UKGgGaAloD0MI3EYDeAuJbkCUhpRSlGgVTWcCaBZHQJRNUIzFdcB1fZQoaAZoCWgPQwjB5bFm5KRxQJSGlFKUaBVNNgFoFkdAlE/GRNh3JXV9lChoBmgJaA9DCIyiBz6Go2tAlIaUUpRoFU3HAmgWR0CUU19m6GxmdX2UKGgGaAloD0MIWvJ4Wn7obkCUhpRSlGgVTS0CaBZHQJRWXe1rqMZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_lander_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:feabe8ff1288c48e3d70bd3ad257016e42b26d19716e2b31f251ab42cf878d24
|
3 |
+
size 84893
|
lunar_lander_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0636cda47d2a8ea0c30a49aebdccf21db3d522cae0ea117a438eb31eca5d0766
|
3 |
+
size 43201
|
lunar_lander_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86de7de75abf381c698ea6151049087b16bc8d0f7d8d09b97b21d582ae7cb4ae
|
3 |
+
size 265751
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 232.96405362776824, "std_reward": 23.879350700720796, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T18:43:18.037767"}
|