File size: 2,558 Bytes
31bbe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-batch8-fp16
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-batch8-fp16

This model is a fine-tuned version of [MCG-NJU/videomae-base-short-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-short-finetuned-ssv2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4339
- Accuracy: 0.4643

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4239        | 0.06  | 200  | 0.3879          | 0.82     |
| 0.4179        | 1.06  | 400  | 1.1635          | 0.6162   |
| 0.4329        | 2.06  | 600  | 0.8215          | 0.63     |
| 0.3051        | 3.06  | 800  | 0.5541          | 0.7412   |
| 0.172         | 4.06  | 1000 | 0.4696          | 0.8363   |
| 0.1955        | 5.06  | 1200 | 0.5384          | 0.78     |
| 0.2301        | 6.06  | 1400 | 1.3358          | 0.635    |
| 0.2995        | 7.06  | 1600 | 1.0372          | 0.7087   |
| 0.3789        | 8.06  | 1800 | 0.8670          | 0.7412   |
| 0.2525        | 9.06  | 2000 | 0.5886          | 0.8225   |
| 0.1846        | 10.06 | 2200 | 0.7851          | 0.735    |
| 0.1547        | 11.06 | 2400 | 0.8905          | 0.7638   |
| 0.2501        | 12.06 | 2600 | 0.9807          | 0.76     |
| 0.1046        | 13.06 | 2800 | 1.0419          | 0.7438   |
| 0.0786        | 14.06 | 3000 | 1.0128          | 0.7538   |
| 0.0178        | 15.06 | 3200 | 1.0156          | 0.75     |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2