File size: 7,397 Bytes
70af2bb
 
e11d1cd
70af2bb
 
 
 
 
 
 
 
 
044f7ff
70af2bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
044f7ff
70af2bb
 
 
 
 
 
 
 
 
 
 
 
4ae7f23
70af2bb
4ae7f23
044f7ff
70af2bb
4636142
3162c1f
70af2bb
 
 
 
 
 
 
 
 
79fc3ce
70af2bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
044f7ff
70af2bb
 
 
d13095e
70af2bb
 
d13095e
70af2bb
 
5c8cb9d
70af2bb
d13095e
 
70af2bb
 
 
 
 
 
 
 
d13095e
70af2bb
 
 
 
d13095e
70af2bb
 
 
 
 
 
 
 
 
 
e54db93
70af2bb
 
 
 
 
 
4b91af6
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
datasets:
- lmms-lab/LLaVA-Video-178K
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
model-index:
- name: LLaVA-Video-7B-Qwen2
  results:
  - task:
      type: multimodal
    dataset:
      name: ActNet-QA
      type: actnet-qa
    metrics:
    - type: accuracy
      value: 58.2
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: EgoSchema
      type: egoschema
    metrics:
    - type: accuracy
      value: 57.3
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MLVU
      type: mlvu
    metrics:
    - type: accuracy
      value: 69.8
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MVBench
      type: mvbench
    metrics:
    - type: accuracy
      value: 58.4
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: NextQA
      type: nextqa
    metrics:
    - type: accuracy
      value: 82.2
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: PercepTest
      type: percepTest
    metrics:
    - type: accuracy
      value: 71.7
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: VideoChatGPT
      type: videochatgpt
    metrics:
    - type: score
      value: 3.54
      name: score
      verified: true
  - task:
      type: multimodal
    dataset:
      name: VideoDC
      type: videodc
    metrics:
    - type: score
      value: 3.71
      name: score
      verified: true
  - task:
      type: multimodal
    dataset:
      name: LongVideoBench
      type: longvideobench
    metrics:
    - type: accuracy
      value: 57.3
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: VideoMME
      type: videomme
    metrics:
    - type: accuracy
      value: 63.2
      name: accuracy
      verified: true
base_model:
- lmms-lab/llava-onevision-qwen2-7b-si
---

# LLaVA-Video-7B-Qwen2-Video-Only

##  Table of Contents

1. [Model Summary](##model-summary)
2. [Use](##use)
3. [Limitations](##limitations)
4. [Training](##training)
5. [License](##license)
6. [Citation](##citation)

## Model Summary

In contrast to lmms-lab/LLaVA-NeXT-Video-7B-Qwen2, this is a 7B model trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Video-SFT-Data) only, based on Qwen2 language model with a context window of 32K tokens.


This model supports up to 110 frames and achieves comparable results to those of lmms-lab/LLaVA-Video-7B-Qwen2 in terms of video benchmarks.

- **Project Page:** [Project Page](https://llava-vl.github.io/blog/2024-09-30-llava-video/).
- **Paper**: For more details, please check our [paper](https://arxiv.org/abs/2410.02713) 
- **Repository:** [LLaVA-VL/LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file)
- **Point of Contact:** [Yuanhan Zhang](https://zhangyuanhan-ai.github.io/)
- **Languages:** English, Chinese


## Use

### Intended use

The model was trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Video-SFT-Data) and have the ability to interact with videos.

**Feel free to share your generations in the Community tab!**

### Generation

We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/LLaVA-VL/LLaVA-NeXT).

```python
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
    if max_frames_num == 0:
        return np.zeros((1, 336, 336, 3))
    vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
    total_frame_num = len(vr)
    video_time = total_frame_num / vr.get_avg_fps()
    fps = round(vr.get_avg_fps()/fps)
    frame_idx = [i for i in range(0, len(vr), fps)]
    frame_time = [i/fps for i in frame_idx]
    if len(frame_idx) > max_frames_num or force_sample:
        sample_fps = max_frames_num
        uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
        frame_idx = uniform_sampled_frames.tolist()
        frame_time = [i/vr.get_avg_fps() for i in frame_idx]
    frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
    spare_frames = vr.get_batch(frame_idx).asnumpy()
    # import pdb;pdb.set_trace()
    return spare_frames,frame_time,video_time
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only "
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)  # Add any other thing you want to pass in llava_model_args
model.eval()
video_path = "XXXX"
max_frames_num = "64"
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
video = [video]
conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video."
question = DEFAULT_IMAGE_TOKEN + f"{time_instruciton}\nPlease describe this video in detail."
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
    input_ids,
    images=video,
    modalities= ["video"],
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
```


# Training

## Model

- **Architecture:** SO400M + Qwen2
- **Initialized Model:** lmms-lab/llava-onevision-qwen2-7b-si
- **Data:** video data only, 1 epoch, full model
- **Precision:** bfloat16

## Hardware & Software

- **GPUs:** 256 * Nvidia Tesla A100 (for whole model series training)
- **Orchestration:** [Huggingface Trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)

### Citations
```bibtex

@misc{zhang2024videoinstructiontuningsynthetic,
    title={Video Instruction Tuning With Synthetic Data}, 
    author={Yuanhan Zhang and Jinming Wu and Wei Li and Bo Li and Zejun Ma and Ziwei Liu and Chunyuan Li},
    year={2024},
    eprint={2410.02713},
    archivePrefix={arXiv},
    primaryClass={cs.CV},
    url={https://arxiv.org/abs/2410.02713}, 
}