lunde commited on
Commit
5075fed
·
1 Parent(s): b4e226a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -9
README.md CHANGED
@@ -12,30 +12,35 @@ widget:
12
 
13
  ## Swedish NER in Flair (SUC 3.0)
14
  F1-Score: **85.6** (SUC 3.0)
15
- B-PRS, I-PRS, B-ORG, I-ORG, B-TME, I-TME, B-WRK, B-LOC, I-LOC, B-EVN, I-EVN, B-MSR, I-MSR, I-WRK, B-OBJ, I-OBJ
16
  Predicts 8 tags:
17
- | **tag** | **meaning** |
18
- |---------------------------------|-----------|
19
- | PRS| cardinal value |
 
20
  | ORG | organisation name|
21
  | TME | time unit |
22
  | WRK | building name |
23
  | LOC | location name |
24
  | EVN | event name |
25
  | MSR | measurement unit |
26
- | OBJ | object |
27
 
28
  Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
 
29
  ---
 
30
  ### Demo: How to use in Flair
 
31
  Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
 
32
  ```python
33
  from flair.data import Sentence
34
  from flair.models import SequenceTagger
35
  # load tagger
36
  tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
37
  # make example sentence
38
- sentence = Sentence(<Insert Text>)
39
  # predict NER tags
40
  tagger.predict(sentence)
41
  # print sentence
@@ -48,8 +53,13 @@ for entity in sentence.get_spans('ner'):
48
  ```
49
  This yields the following output:
50
  ```
51
- TODO()
 
 
52
  ```
53
- So, the entities "*TODO*" (labeled as a **EVT**), are found in the sentence "TODO".
 
 
54
  ---
55
- Please mention londogard if using this models.
 
 
12
 
13
  ## Swedish NER in Flair (SUC 3.0)
14
  F1-Score: **85.6** (SUC 3.0)
15
+
16
  Predicts 8 tags:
17
+
18
+ |**Tag**|**Meaning**|
19
+ |---|---|
20
+ | PRS| person name |
21
  | ORG | organisation name|
22
  | TME | time unit |
23
  | WRK | building name |
24
  | LOC | location name |
25
  | EVN | event name |
26
  | MSR | measurement unit |
27
+ | OBJ | object (like "Rolls-Royce" is a object in the form of a special car) |
28
 
29
  Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
30
+
31
  ---
32
+
33
  ### Demo: How to use in Flair
34
+
35
  Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
36
+
37
  ```python
38
  from flair.data import Sentence
39
  from flair.models import SequenceTagger
40
  # load tagger
41
  tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
42
  # make example sentence
43
+ sentence = Sentence("Hampus Londögård bor i Lund och har levererat denna model idag.")
44
  # predict NER tags
45
  tagger.predict(sentence)
46
  # print sentence
 
53
  ```
54
  This yields the following output:
55
  ```
56
+ Span [0,1]: "Hampus Londögård" [− Labels: PRS (1.0)]
57
+ Span [4]: "Lund" [− Labels: LOC (1.0)]
58
+ Span [10]: "idag" [− Labels: TME(1.0)]
59
  ```
60
+
61
+ So, the entities "_Hampus Londögård_" (labeled as a **PRS**), "_Lund_" (labeled as a **LOC**), "_idag_" (labeled as a **TME**) are found in the sentence "_Hampus Londögård bor i Lund och har levererat denna model idag._".
62
+
63
  ---
64
+
65
+ **Please mention londogard if using this models.**