|
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from huggingface_hub.constants import HF_HUB_CACHE |
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel |
|
import torch |
|
import torch._dynamo |
|
import gc |
|
from PIL import Image as img |
|
from PIL.Image import Image |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
import time |
|
from diffusers import DiffusionPipeline |
|
from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only |
|
|
|
import torch |
|
import math |
|
from typing import Type, Dict, Any, Tuple, Callable, Optional, Union |
|
import ghanta |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin |
|
from diffusers.models.attention import FeedForward |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttentionProcessor, |
|
FluxAttnProcessor2_0, |
|
FusedFluxAttnProcessor2_0, |
|
) |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle |
|
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers |
|
from diffusers.utils.import_utils import is_torch_npu_available |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
|
|
import os |
|
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" |
|
os.environ["TOKENIZERS_PARALLELISM"] = "True" |
|
torch._dynamo.config.suppress_errors = True |
|
|
|
class BasicQuantization: |
|
def __init__(self, bits=1): |
|
self.bits = bits |
|
self.qmin = -(2**(bits-1)) |
|
self.qmax = 2**(bits-1) - 1 |
|
|
|
def quantize_tensor(self, tensor): |
|
scale = (tensor.max() - tensor.min()) / (self.qmax - self.qmin) |
|
zero_point = self.qmin - torch.round(tensor.min() / scale) |
|
qtensor = torch.round(tensor / scale + zero_point) |
|
qtensor = torch.clamp(qtensor, self.qmin, self.qmax) |
|
return (qtensor - zero_point) * scale, scale, zero_point |
|
|
|
class ModelQuantization: |
|
def __init__(self, model, bits=7): |
|
self.model = model |
|
self.quant = BasicQuantization(bits) |
|
|
|
def quantize_model(self): |
|
for name, module in self.model.named_modules(): |
|
if isinstance(module, torch.nn.Linear): |
|
if hasattr(module, 'weightML'): |
|
quantized_weight, _, _ = self.quant.quantize_tensor(module.weight) |
|
module.weight = torch.nn.Parameter(quantized_weight) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
quantized_bias, _, _ = self.quant.quantize_tensor(module.bias) |
|
module.bias = torch.nn.Parameter(quantized_bias) |
|
|
|
|
|
def inicializar_generador(dispositivo: torch.device, respaldo: torch.Generator = None): |
|
if dispositivo.type == "cpu": |
|
return torch.Generator(device="cpu").set_state(torch.get_rng_state()) |
|
elif dispositivo.type == "cuda": |
|
return torch.Generator(device=dispositivo).set_state(torch.cuda.get_rng_state()) |
|
else: |
|
if respaldo is None: |
|
return inicializar_generador(torch.device("cpu")) |
|
else: |
|
return respaldo |
|
|
|
def calcular_fusion(x: torch.Tensor, info_tome: Dict[str, Any]) -> Tuple[Callable, ...]: |
|
alto_original, ancho_original = info_tome["size"] |
|
tokens_originales = alto_original * ancho_original |
|
submuestreo = int(math.ceil(math.sqrt(tokens_originales // x.shape[1]))) |
|
argumentos = info_tome["args"] |
|
if submuestreo <= argumentos["down"]: |
|
ancho = int(math.ceil(ancho_original / submuestreo)) |
|
alto = int(math.ceil(alto_original / submuestreo)) |
|
radio = int(x.shape[1] * argumentos["ratio"]) |
|
|
|
if argumentos["generator"] is None: |
|
argumentos["generator"] = inicializar_generador(x.device) |
|
elif argumentos["generator"].device != x.device: |
|
argumentos["generator"] = inicializar_generador(x.device, respaldo=argumentos["generator"]) |
|
|
|
usar_aleatoriedad = argumentos["rando"] |
|
fusion, desfusion = ghanta.emparejamiento_suave_aleatorio_2d( |
|
x, ancho, alto, argumentos["sx"], argumentos["sy"], radio, |
|
sin_aleatoriedad=not usar_aleatoriedad, generador=argumentos["generator"] |
|
) |
|
else: |
|
fusion, desfusion = (hacer_nada, hacer_nada) |
|
fusion_a, desfusion_a = (fusion, desfusion) if argumentos["m1"] else (hacer_nada, hacer_nada) |
|
fusion_c, desfusion_c = (fusion, desfusion) if argumentos["m2"] else (hacer_nada, hacer_nada) |
|
fusion_m, desfusion_m = (fusion, desfusion) if argumentos["m3"] else (hacer_nada, hacer_nada) |
|
return fusion_a, fusion_c, fusion_m, desfusion_a, desfusion_c, desfusion_m |
|
|
|
from diffusers import FluxPipeline, FluxTransformer2DModel |
|
Pipeline = None |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.enabled = True |
|
torch.backends.cudnn.benchmark = True |
|
|
|
ckpt_id = "black-forest-labs/FLUX.1-schnell" |
|
ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9" |
|
|
|
TinyVAE = "madebyollin/taef1" |
|
TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689" |
|
|
|
|
|
def empty_cache(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
|
|
def load_pipeline() -> Pipeline: |
|
path = os.path.join(HF_HUB_CACHE, "models--manbeast3b--flux.1-schnell-full1/snapshots/cb1b599b0d712b9aab2c4df3ad27b050a27ec146/transformer") |
|
transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16, use_safetensors=False) |
|
pipeline = FluxPipeline.from_pretrained(ckpt_id, revision=ckpt_revision, transformer=transformer, local_files_only=True, torch_dtype=torch.bfloat16,) |
|
pipeline.to("cuda") |
|
quantize_(pipeline.vae, int8_weight_only()) |
|
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True) |
|
for _ in range(3): |
|
pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) |
|
return pipeline |
|
|
|
|
|
|
|
sample = None |
|
@torch.no_grad() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image: |
|
global sample |
|
if not sample: |
|
sample=1 |
|
empty_cache() |
|
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] |
|
return image |