File size: 4,857 Bytes
dfd2cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---

license: other
base_model: "sd3/unknown-model"
tags:
  - sd3
  - sd3-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'A senior high school girl, white hair, green eyes, flat breasts. In Japanese anime style.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
---


# aquability-ft

This is a LyCORIS adapter derived from [sd3/unknown-model](https://huggingface.co/sd3/unknown-model).


The main validation prompt used during training was:
```

A senior high school girl, white hair, green eyes, flat breasts. In Japanese anime style.

```


## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
- Skip-layer guidance: 

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 0
- Training steps: 1004
- Learning rate: 0.0001
  - Learning rate schedule: polynomial
  - Warmup steps: 100
- Max grad norm: 2.0
- Effective batch size: 1
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3'])
- Optimizer: adamw_bf16

- Trainable parameter precision: Pure BF16

- Caption dropout probability: 10.0%





### LyCORIS Config:

```json

{

    "algo": "lokr",

    "multiplier": 1.0,

    "linear_dim": 10000,
    "linear_alpha": 1,

    "factor": 16,

    "apply_preset": {

        "target_module": [

            "Attention",

            "FeedForward"

        ],

        "module_algo_map": {

            "Attention": {

                "factor": 16

            },

            "FeedForward": {

                "factor": 8

            }

        }

    }

}

```


## Datasets

### vtubers
- Repeats: 1
- Total number of images: 502
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No


## Inference


```python

import torch

from diffusers import DiffusionPipeline

from lycoris import create_lycoris_from_weights





def download_adapter(repo_id: str):

    import os

    from huggingface_hub import hf_hub_download

    adapter_filename = "pytorch_lora_weights.safetensors"

    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))

    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")

    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)

    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)

    os.makedirs(path_to_adapter, exist_ok=True)

    hf_hub_download(

        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter

    )



    return path_to_adapter_file

    

model_id = './../Hololette/models/aquability_0'

adapter_repo_id = 'lshiftless/aquability-ft'

adapter_filename = 'pytorch_lora_weights.safetensors'

adapter_file_path = download_adapter(repo_id=adapter_repo_id)

pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16

lora_scale = 1.0

wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)

wrapper.merge_to()



prompt = "A senior high school girl, white hair, green eyes, flat breasts. In Japanese anime style."

negative_prompt = 'blurry, cropped, ugly'



## Optional: quantise the model to save on vram.

## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.

#from optimum.quanto import quantize, freeze, qint8

#quantize(pipeline.transformer, weights=qint8)

#freeze(pipeline.transformer)

    

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level

image = pipeline(

    prompt=prompt,

    negative_prompt=negative_prompt,

    num_inference_steps=20,

    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),

    width=1024,

    height=1024,

    guidance_scale=3.0,

).images[0]

image.save("output.png", format="PNG")

```